PRorFESSIONALBASIC

A Window-Oriented Programming Language

Morgan Computing Co., Inc.
~ P.O.Box 112730 e Dallas, Texas 7501

Supplemental Information
Professional BASIC - Version 2.0

This version of Professional BASIC works on the IBM PC,
IBM PC XT, IBM PC AT, AT&T 6300, Compaq Deskpro, and other
compatible machines with 320k of RAM memory or more. 512k
or more RAM is recommended. Programs loaded in Professional
BASIC™ expand in memory to take up more room than just the
byte size of the file. This is because of the extensive "seeding"
operations and development of the PCODE, which add a lot of
information upon loading a program, required to operate the
sophisticated tracing environment. In addition, the syntax of
every line loaded is checked at load time. (This complex
process accounts for the reason why programs take longer to
load than would be expected.)

Arrays and variables take up the same amount of memory as
in PC BASIC™, except that integers are "double precision® and
take up 4 bytes each instead of 2 bytes. (In random access disk
files, an integer can be stored with the MKI$ command as either
2 bytes or 4 bytes, depending on whether the FIELD statement
allocates 2 or 4 character spaces. The conversion is handled by
Professional BASIC™ automatically.)

The "semi-compile" process in this release of Professional
BASIC™ has been reworked. As a result, the time for the
*semi-compile® when a "RUN" or "SRUN" command is given
has been cut by about 40%. In addition, when a program is
suspended and is not altered, it can be rerun instantly with a
*RUN" or "SRUN" command. The semi-compile is not redone
in such a case. Any alteration of the program, however, will
mean that a semi-compile will be done to restart the program.

Supplemental Information - Version 2.0 S-2

New Program Statements

CHAIN

COMMON These statements work as specified by the PC
BASIC™ manual. However, you may put one, two, or all three
of the optional parameters (line #, "ALL", or "DELETE range")
in any order in the statement and the system will accept them.

If you are in a trace window when a CHAIN is executed, a
few more things will happen on the screen. The specific
commands Professional BASIC™ uses to perform a CHAIN
operation will be displayed on the command screen, before the
program being chained to begins to execute.

When running a program normally you can see a trace of
just the chain operation by entering the command ,showchain

on the Command Screen sometime before the program is loaded.
Or, in general, enter this command anytime before the CHAIN
command is encountered in the program. To turn this trace
action off enter: ,noshowchain

Error Trapping

ON ERROR

ERR, ERR2

ERL

ERRS

ERROR

RESUME n These commands work much the same as in PC
BASIC. A RESUME 0, however, will take you back to the actual
statement in a line which created the error instead of the
beginning of a line. What is new in this subsystem is the
addition of two special variables: ERR2 and ERR$. Professional
BASIC™ has over 100 numbered error messages compared to

Supplemental Information - Version 2.0 S-3

about 50 in PC BASIC. Also, it is important to note that many
of the PC BASIC codes are not relevant under Professional
BASIC. For instance, the first three messages *NEXT without
FOR®, "Syntax Error", and "RETURN without GOSUB" are not
relevant since these problems are caught before a program
begins to execute in Professional BASIC™, during the *semi-
compile® operation when a "RUN" or "SRUN® command is
issued. On the other hand, for the *lllegal Function Call® error
(Error Code #5)in PC BASIC, Professional BASIC™ has 57
separate error message codes.

For compatibility purposes, you can use either the PC BASIC
error code with the variable "ERR" or you can use the
*extended® code in Professional BASIC™ with the special
variable "ERR2". See Chapter 14 of the manual for the detailed
codes. The "extended' code in ERR2 is equal to the PC BASIC
code times 100 plus a number from 1 to 99. For example error
number 24 in PC BASIC is "Device not ready". The extended
code in PB is 2401. The "lllegal function call* error number 5
becomes an extended message of 501, 502, 503, etc. You can
use either code in your programs. |f you already have programs
which use the PC BASIC codes, you do not have to change the
program,

In addition to the extended code number (ERR2) there is an
additional variable -- ERR$. This is a string variable which
contains the Professional BASIC™ error message text. If a
program ends in an error, from the command screen you can
type ERR, ERR2, ERL, and ERR$ to get both error codes, the line
number of the error, and the message text itself. With the ON
ERROR command, you can also use this information in your
program to control what happens when an error occurs.

Some common errors are handled automatically by Profes-
sional BASIC™ (without the use of the ON ERROR system) and

Supplemental Information - Version 2.0 S-4

allow a program to continue executing and not have to be
restarted. If a printer is not ready or is out of paper or if a
disk drive door is open, then a window will open on the screen
and allow the user to fix the problem and continue with program
execution, at the statement where the error occurred. Thus,
much of the need for using ON ERROR has been taken care of
by the system, although many people will still want to explicitly
maintain control over errors in their programs.

Key Definition/Trapping

KEY(n)
ON KEY(n) The ON KEY system works as indicated in the PC
BASIC manual.

KEY n,x$ The assignment of text to a function key works in
the program execution mode, but not in immediate mode. If a
function key is not being used in an ON KEY statement, then you
can use a program statement to assign up to 31 characters to it
(PC BASIC accepts up to 15 characters).

KEY ON, KEY LIST, KEY OFF These are not a part of the Pro-
fessional BASIC™ system. Also, the definitions of the function
keys when on the command screen are fixed and cannot be
reassigned.

Graphics

The graphics system in Professional BASIC™ works in much
the same way as in PC BASIC. Both High and Medium resolution
modes are supported as well as 40 and 80 column text modes.
The number of colors and the palette choices are all the same.
The speed of the graphics operations, per se, are not affected

Supplemental Information - Version 2.0 S-5

by the use of the 8087,/80287 numeric coprocessor, except when
the “"start" and "end" parameters are used in a circle
statement. Where graphics operations depend on calculations to
be performed for the paramters in a graphics function, however,
there may be a very considerable difference in speed between
the same program run under PB.EXE vs. PB8.EXE.

In general, the graphics functions in Professional BASIC™
are much faster than in PC BASIC. In some cases, like drawing
horizontal lines, Professional BASIC™ is over 20 times faster.

You can run program that are creating a graphics output
screen, but you cannot split.the output screen and also see one
of the trace windows. When you go to the trace window system
it is always in text mode. When moving from a trace window to
the output screen, if it is in graphics mode then the screen mode
is changed automatically. You can halt full speed program
execution and single step while on the output screen by repeat-
edly pressing <Alt space bar>.

The first press puts the system in single step mode and the sub-
sequent presses execute one BASIC statement per press.

The status line indicates whether the user output screen is
in "hi", "med", or text mode. Chapter 7 of the Professional
BASIC™ manual describes the Status Line. Position "P* (shown
in Figure 7-1 and described in the manual) has been replaced
with a new indicator. "hi" indicates high resolution graphics
mode, "med® indicates medium resolution graphics mode, and
three numbers, such as "000" indicate that the screen is in text
mode (see Supplemental Manual Note #1 below for details on
the meaning of the three numbers, representing the ®pages”
that can be written to or displayed in 40 or 80 column text
mode).

Supplemental Information - Version 2.0 S$-6

We appreciate the use of the Assembler code given to us by
Ray Duncan of Laboratory Microsystems, Inc., Marina del Rey,
California, in the implementation of the graphics subsystem in
Professional BASIC™.

CIRCLE This works as specified in the PC BASIC manual,
except that if you specify an aspect ratio, you cannot leave out
the color, start, and end parameters. Put in O for the start and
end if you want a full circle and a number or variable name for
the color. If you want to specify a start and end for the circle,
you have to specify the color; but you do not have to identify
the aspect ratio if you want the default. In general you can
leave out paramenter to the right to get the default setting but
you cannot leave out parameters in the middle. That is, a
statement such as:

CIRCLE (160,100),60,,,,5/18

is not valid since the color, start, and end have been left out.
However, these two statements are okay:

CIRCLE (160,100),60,2
CIRCLE (160,100),60

COLOR (graphics)

LINE

PAINT

POINT

PSET & PRESET

SCREEN (statement)

WIDTH 40 or 80 These statements and commands work as
indicated in the PC BASIC manual, but only as program state-
ments (i.e., not in immediate mode).

Supplemental Information - Version 2.0 S-7

New or Enhanced Immediate Mode Commands

(delete_var_all Delete all variables currently defined and
active, but leave the program in memory.

,delete_var a,b,... Delete one or more specified variables
(a,b,sss) and leave the program and all
other variables alone.

Just_common Delete all variables except those
specified in the COMMON statement(s) in
the current program.

.delete_prog_all Deletes the current program, but leaves
all the variables and their values intact.

,crun n,scrn,specd This is the "chain run" command, which
runs the currently loaded program, but
differs from a normal RUN command as
follows: 1) leaves all files open, 2)
leaves variables intact which are
currently defined, and 3) does not clear
the screen.

n is the line number on which execution
will begin.

scrn specifies which screen(s) will be active
when running begins (such as °l*, or
Dv, etc).

speed is either *"f* for full or "s" for step
speed.
,reset_opdef This command makes the option base and

the first letter type definitions (i.e.,
DEFINT, DEFSNG, etc.) undefined.

Supplemental Information - Version 2.0 S-8

Each of these above six commands can be used to manually
perform the same operation as a CHAIN statement, or perform a
portion of a chain operation. For instance, you could correct an
error in a program and rerun it without affecting either the
status of the open files or the values of all the variables. You
could also delete the current program and load in another one
(with MERGE command) and run it, all without disturbing the
values of all the variables.

LSORTL
LSORTV Same as SORTV and SORTL but the information is
sent to the printer.

GOTO n Immediate mode method of transfering control to a
specified line and resuming execution/tracing of the program,
beginning with that line., This immediate mode command only
works while a program is in suspended mode. If you want to
load a program and start execution on a designated line:

- Load the program

- Enter SRUN command

- Press <Break>

- Enter the GOTO n command (line number or label)
- Press <Enter> to resume execution mode

You will be place back on the List trace screen, but with
the "execution bar® on the line designated, instead of on the
first line. The GOTO n command is a method of moving the
"execution bar" to some line other than the one it is currently
on.

RENUM You can specify a range rather than just a starting
line number or line label, and lines in the middle of a program
can be renumbered without affecting line numbers before or
after. . Example:

renum 1500,1500-1990,5

Supplemental Information - Version 2.0 S-9

This will take lines 1500-1990 and renumber them beginning
at 1500, incremented by a count of 5.

Another new feature is the capability to specify that
certain lines will always keep the same line number when the
program is renumbered. To do this create a remark line which
begins with rem abs and has a line number following somewhere
in the line. For example:

1000 rem abs This is always line 1000

<Backspace> key Removing characters from the program
key buffer. There is a buffer of up to 64 characters that is
maintained. These characters are accessed and read by either
an INPUT or INKEY$ statement in the executing program.
Occasionally you may press a key and unintentionally put a
keystroke (a character) into this buffer for a running program.
The <backspace> key in the trace system lets you back out
these characters one at a time, last in first out. If you are on
the program output screen, press

<Alt backspace>

Each press removes a character from the buffer, starting
with the last one entered. If you are on a trace screen simply
press the <backspace> key. Notice that the indicator on the
right of the status line which shows the count on the number of
characters in the buffer (maximum of 64) is decremented by one
on each press. This single character counter goes from 0 to 9
and then a to z. Thus the counter indicates that there are 1 to
35 characters in this buffer or, if it shows a "z", 36 to 64 char-
acters. On a trace screen, press <Alt A> repeatedly. Notice
how the indicator is incremented as characters are put into the
buffer for the user program. Then press <backspace> and see
the counter decrement, as characters are removed from the
buffer (or "popped" off the stack).

Supplemental Information - Version 2.0 $-10

New Trace System Commands

#

Fast GOSUB. When on the L trace window and the
"execution bar" is on a GOSUB statement, pressing #
(<Shift=3>) will cause the subroutine to be executed at
full native speed on the program output screen every
time it is called at any line in the program. Thus, you
can save a lot of time tracing through a program since
the trace will not go through the code in this subrou-
tine. It is as if you pressed the <X> key and a breakpo-
int were set at the next instruction after the RETURN
from the subroutine.

Remove fast GOSUB. When the "execution bar" is on a
GOSUB statement that is set to "fast", pressing this key
will reset it back to "slow®, and tracing will show each
line executed in the subroutine. '

System States: There are four new system states. A complete
list is shown below, with the new ones marked (See manual
Section 7-2, F):

Initial state of the program - has not been
executed

X Program is executing

s Program is suspended - was executing - but user
presed <Break> key or program came to a stop.
Execution can be resumed by a <Enter>.

t Was state s, but program has been changed.

u (new) Was state s, but variables have been deleted.

v (new) Was state s, but program has been changed and
variables deleted.

e Program ended in error - execution cannot be

resumed.

Supplemental Information - Version 2.0 S-11

f Was state e, but program has been changed.
g (new) Was state e, but variables have been deleted.
h (new) Was state e, but program has been changed and

variables deleted.

Supplemental Manual Notes

1. The status line now has some additional items on it at the
right. There is now an indicator for:

APAGE Active page which the program is addressing

VPAGE Visual page which the program thinks is
displayed

MPAGE Monitored page which is actually being displayed

The three characters near the right of the status line (e.g., 000)
show this, where the first number is the APACE, the second is
the VPAGE, and the third is the MPAGE. This position is where
the "P" used to be in previous versions.

When you are on the program output screen (and only then)
you can switch the page being viewed from the current page by
pressing and holding the <Alt> key and then hitting a number
key for the page you want to monitor; <Alt 0,1,2,0or 3> in 80
column text mode or <Alt 0,1,2,3,4,5,6,0r 7> in 40 column text
mode. The number key to use is at the top of the keyboard.
Three pages can be accessed in 80 column mode and 8 pages in
40 column. In this way the program can be writing to one page
(APAGE - active page), the program thinks it is displaying
another screen (VPAGE - visual page), and you are actually
looking at a third screen (MPAGE - monitored page). You may
want to observe the APAGE as it is being built by the program
when the visual page is a different one.

Unlike PC BASIC, you can have 4 screen pages separately
maintained and then switch between them even if you are using
an IBM PC Monochrome Display and Adapter Card. RAM

Supplemental Information - Version 2.0 S-12

memory instead of the memory on the Graphics Adapter card is
used by Professional BASIC™ to store these screens.

The cursor location on each page is automatically mainta-
ined and restored for you as you or the progam switches from
one page to another.

2. To duplicate a line of code in Professional BASIC™, enter an
"EDIT n" command or use one of the edit function keys (F6, F8,
F9, or F10) to display the line for editing. Then, move the
cursor left over the line number and type in a different number.
You will then have both lines in your program. Use the DEL
command to delete the original line if you do not want it (i.e.,
you were performing a "move line" edit.

3. You do not have to specify the beginning or ending line
number for a DEL n-m command. The following commands are
valid:

DEL -100
DEL 200-

4, After performing a RUN filespec, SAVE filespec, or
LOAD filespec command you can enter a subsequent SAVE or
LOAD and the last filespec used is remembered and used again.
This default filespec can be seen at the bottom of the Memory
or "Y" window.

5. RANDOMIZE n -- The parameter n is required in this
function. A handy parameter to use for this "reseeding”
operation is "timer". The command would be: RANDOMIZE
TIMER The system clock will provide a number. If the user is
to provide a seed, just precede the function with an "INPUT
var" statement and pass it to a "RANDOMIZE var" instructon.

6. If you name a variable and an array of the same type with
the same name, the SORTV command will only show one or the

Supplemental Information - Version 2.0 S-13

other, as will the FIND command. The SEARCH command can
be used instead of FIND.

7. LOF(filenum) Returns the actual length of the file in
bytes. Note: On a "new" file, this
length is zero until the file is closed. On
an "old" file opened for output, this
length is the previous file length until the
file is closed.

EOF(filenum) This function also works with random
files to tell you when you have accessed
the last record in the file with a GET
#n,m statement.

LOC(filenum) With sequential files, returns the actual
number of bytes into the file.

You can read or write to a random access file as a sequen-
tial file if you wish.

8. Numeric expressions. (1) Two operators cannot be placed
next to one another. If you want to raise 3 to the power of -2,
then the -2 must be enclosed in parentheses. (2) If you want
to enter 10 to the 30th power, enter: 10.e30 not 10e30 The
latter is an error since it is an attempt to calculate an integer
number higher than the upper limit of integers. The decimal
point in the first number marks it as a floating point number
which can have an exponent up to 308 (255 for the BCD
version).

Supplemental Information
Professional BASIC - Version 1.08

Professional BASIC™ now works on both the IBM PC AT

(with or without the 80287 coprocessor) and on the AT&T 6300
Personal Computer.

New Program Statements - These four options for the OPEN

statement are now implemented:

OPEN SCRN:
OPEN LPT1:
OPEN LPT2:
OPEN LPT3:

New Immediate Mode Commands:

,SNn

This command is used to speed up screen display opera-
tions when a color graphics adapter card is installed. It
is an on/off toggle. To avoid the problem of screen in-
terference (or "snow') with the IBM Color/Graphics
Adapter Card, the screen writing functions in Profes-
sional BASIC™ have been slowed down, but only when
this card is being used. The monochrome system works
fast. If you have a non-1BM color/graphics card or do
not mind the *snow" effect, enter ,sn on the command
screen. Program tracing and other operations involving
the screen display will be speeded up considerably. Try
it if you are not using the monochrome adapter card to
see the effect.

Supplemental Information - Version 1.08 S-2

Supplemental Manual Notes:

1. A CAUTION: Professional BASIC™ allows you to toggle into
a mode whereby the <Ctrl>, <Alt>, and <Shift> keys can be left
*on® without physically keeping them pressed down. This can
lead to great confusion and unpredictable results if you acci-
dentally get into this mode and aren't aware of it.

This *handicapped keyboard" feature is turned "on" by
pressing the <5> key on the numeric keypad (when the Num
Lock mode is "off"). In this "sticky" mode pressing one of the
three keys shifts it "on". Pressing it again shifts it "off". In
the case of the <Shift> key this will *shift-lock® every key on
the keyboard. The Status Line at the top of a trace screen will
let you know if you are in this mode and if one of the three
keys is "on". A "K" in inverse video will appear on the Status
Line if you are in this mode. A "c", "s®, and/or "a" will appear
if one of the three keys is "on".

2. Any time a command on the Command Screen causes
something to scroll on the screen (i.e., LIST, FIND, SEARCH,
LOAD, SORTV, SORTL, or FILES) you can control the scrolling
action with three keys:

<Space Bar> Suspends the scroll or scrolls the next
line in single step fashion.

<Enter> Continues full speed scrolling if currently
suspended in single step mode.

<Esc> Aborts the scrolling operation and returns
to the Command Screen prompt.

3. If you try to load a file that has a line with no line number
and the line does not begin with at least one space, Professional
BASIC™ will try to execute the command as an immediate mode
command.

December 1984

8087/80287

ENHANCEMENT PACKAGE

This enhancement package allows Professional BASIC™ to
take advantage of your 8087 or 80287 numeric coprocessor for
additional speed and accuracy. You also recieve a BCD (Binary
Coded Decimal) option for true 16-digit decimal precision. The
8087,/80287 option requires prior purchase of Professional BASIC™
and is available at $50.00. See Appendix C for more details on

the differences in speed and accuracy.

PROFESSIONAL BASIC™ SLIPCASE
For the protection of your 3-ring binder a Professional
BASIC™ slipcase is available for an additional $6.00. Limited

quantities.
Add $3.00 Shipping and Handling to all orders

[__1Check Enclosed

[_IVISA [_IMC # Exp. Date_ /__/_
Name:

Address:

City: State: Lip:

BASIC Serial Number:

PRroressioNALBASIC

A Window-Oriented Programming System

by Dr. Neil Bennett

Copyright © 1984 by Neil Bennett

Manual by Chris H. Morgan

Copyright © 1984 by Morgan Computing Co., Inc.
September 1, 1984

Morgan Computing Co., Inc.
P.O. Box 112730 Dallas, Texas 75011

FOREWORD

Some of the earliest ideas behind Professional BASIC™
started in 1968. | had been used to computers with a type-
writer where just one operation was needed to read a character
from the keyboard and then print the character. However, |
began to work on a PDP-8, where separate operations were
needed to read a character and to print the character. This
gave the opportunity to sample each character sent from the
keyboard in real time and to determine if that incoming
character was one that was considered acceptable. If it was
not acceptable, the character could be rejected with a bell
character rather than printed. The program | designed on the
PDP-8 system implemented a very simple calculator language.
In Professional BASIC™, however, the Dynamic Syntax
Checker™ is used to validate every keystroke entered, whether
an arithmetic command is being entered or a line of program
code is being created.

Another fundamental idea behind Professional BASIC is the
one of a white line following control through a listing of the
program. This evolved from the notion of a small spot following
the words on a screen on some of the old sing-along shows.
Once the means was found to separately (and efficiently)
maintain screens for the command screen, the print screen and
the list trace screen, the other screens followed. One observer
commented that "you've built a fully instrumented system®. |
agree.

An earlier (1980) version of this system was implemented on
an APPLE Il computer with 48kb of memory (Hands on BASIC,

now published by and available from EduWare, Inc.). It was
regarded as an interesting teaching system but of little practical
interest because the language was a minimal subset of BASIC.

This system implements a much richer BASIC. Also, a semi-
compiled approach was used to gain execution speed. When the
user types RUN, arithmetic expressions are translated to pseudo
code strings of very elementary operations like load, add, etc.
During execution, this string can be followed easily, whereas an
interpreter has to analyze and evaluate arithmetic expressions
each time they are encountered. The Dynamic Syntax
Checker™ guarantees there are no syntax errors, so the transla-
tions can be done more easily. As a result, however, these
operations consume large amounts of memory.

A system must be built from scratch to implement this style
of BASIC. It was an obvious decision to implement the dialect
of BASIC already being used. The aim is a standard BASIC in an
enhanced environment. Another advantage is that programs
developed under this system can be compiled to run much faster
using the BASIC compilers already available.

It was also obvious to address all the memory which could
be added to the PC, although implementing that decision on an
architecture of 64k byte pages has not been trivial.

Finally, the ideas behind this system are not limited to the
IBM PC or the BASIC language. As 16 bit machines and large
memories become available, we expect that users will prefer
this style of language system,

Neil Bennett
March, 1984

ACKNOWLEDGEMENTS

It is a pleasure to recognize the contributions of those who
have helped to bring Professional BASIC™ to its current state of
development.

| wish to express my particular indebtedness to Rudi Hoess
of Sydney, Australia and to Chris Morgan here in Dallas, Texas
for their support, encouragement and guidance. Many other
people have given valuable encouragement and comments.

Roger Keating; Sydney, Australia
Juris Reinfelds; Woolongong, Australia
Richard Miller; Woolongong, Australia
Bill Baker; San Francisco, California
Ted Perry; Sacramento, California
Portia Isaacson; Dallas, Texas

Egil Juliussen; Dallas, Texas

Harold Kinne; Dallas, Texas

Dan Rollins; Glenview, California

Art Babick; Dallas, Texas

Dick Barr; Dallas, Texas

and to the members of the APPLE club and the IBM PC club here
in Dallas, my thanks.

Special thanks also to the people at Morgan Computing
Company, who have given me much encouragement, support,
suggestions and comments. They are:

Brad Crumpecker,
Herb Dorf,

Jim Graham,

Ron Hall,

Jim Hoisington,
Bill Hood,
Charles Kroboth,
John Marxer,
Richard Rudd,
Deborah Pinnick
and Scott Wierschem.

This system is dedicated to JOY BENNETT, who was the first
programmer that | ever knew. In the 50's my mother wrote in-
structions for knitting books telling how to make woolen
sweaters in sizes 34, 36, and 38. This system is more complex,
but the idea is the same.

I am grateful to my wife Judy for her patience and under-
standing.

Neil Bennett,
March, 1984

TABLE OF CONTENTS

FOREWORD
Acknowledgements
1 - INTRODUCTION

REQUIREMENTS cccccceccoccccnse
SYSTEM BACKUP ¢ ccecececcccocsce
STARTING Professional BASIC™ DEMO .
What is "Semi-Compiling” <. ccceeee
The Demonstration Program «« ..
4 WHY A NEW APPROACH e ccecce o
5 ROLEOF THEMANUAL . e cceesesese
6 ORGANIZATION OF THE MANUAL
-7 HOW TO USE THE MANUAL . .ccecee
8

9

1-
1-
1-

W N =

COMPATIBILITY WITH IBM PC BASIC ..
COMPILING PROGRAMS s ceeeevace

SECTION | - PROGRAMMING WITH Professional BASIC™
2 - Professional BASIC™ DIFFERENCES

2-1 IMMEDIATEMODE ¢cccecceocccen
2-2 BASIC PROGRAM LINES e ccccoeeee
2-3 RANGES OF NUMERIC VALUES
2-4 ARRAYS cceeeeeeccccsocccsscsnse
Sizeof arrays e eeeseoccecoscscce
2-5 FILEHANDLING .ccceoocosccccce
2-6 DISKFILES ceeceecccsccsocccase
Filenumbers ¢ c e ovevecoccccccas
Number of records ina file «eecesee
Number of bytes inarecord
Number of bytes per file, « o « o e s 0 0 oo
Filebuffers e e e oo veeoecoscscscscs

[QP G G W it G Gt g+
SO VWVOVONOTUNTWWN

- -
- -]

DO UVUTS WN =

NNN
T L L e

NINNNDNMNNNNDN
<2« M <p B)

TABLE OF CONTENTS

2-16

FILE ACCESS STATEMENTS ¢ ¢ e e e e 0o e
*STANDARD" INPUT/OUTPUT FILES ..
COMPILING Professional
BASIC™ PROGRAMS . v
RUNTIME SYSTEM - INTERPRETER ...
CODING IN UPPER OR LOWER CASE ..
THECURSOR tceecevceccccocsce
THETABKEY ceeeeeccccccoccces
COMMAND LINE PARAMETERS ¢ ¢ e 0o
MEMORY DISK, PRINT SPOOLER,
AND OTHER UTILITIES
- COMPATIBILITY ceeeo e
COLOR GRAPHICS VS.
MONOCHROME SCREEN e o e ceoeeow

3 - COMMANDS AND STATEMENTS - DIFFERENCES

3-1

3-
3

2
3

3-4

COMMANDS and

STATEMENTS - REPLACED. ¢ ¢ ¢ ¢ ¢ & «
COMMANDS and STATEMENTS - NEW ..
COMMANDS and STATEMENTS -

WITH DIFFERENCES ¢ e ceeeoeeee
COMMANDS and STATEMENTS -

NOT YETAVAILABLE .. ¢ eveeoee

4 - LOADING, RUNNING, AND SAVING PROGRAMS

4-1

PROGRAMS WITHOUT LINE NUMBERS

5 - CREATING AND EDITING PROGRAMS

5-1
5-2

THE DYNAMIC SYNTAX CHECKER™ ...
CREATING, RUNNING, AND EDITING
PROGRAMS - SOME BACKGROUND .

.

.

5-1

5-3

TABLE OF CONTENTS

[
e
N WN-=O

ENTERING AND EDITING PRO-

GRAMLINES o 85 0606060 55 8 % 0 0 0 s e

5-5

LISTC(xnmand-........5‘10

LOCATING VARIABLES, LABELS
& LINE NUMBERS IN A

PROGRAM - THE "FIND" COMMAND . 5-12
LOCATING ANY TEXT STRING IN THE
PROGRAM - THE "SEARCH" COMMAND 5-13

SORTV AND SORTL COMMANDS ...

ENTRY OF LONG VARIABLE
NAMES AND LABELS
DELETECommand ..ccoeeee
ONSCREEN ARITHMETIC
THE FINETRACEMODE .cc e
PRINTING DATE AND TIME .. .
FUNCTION KEYS ceeeevesce
MERGE COMMAND s ccceecee
SAVING PROGRAMS WITHOUT
LINENUMBERS ¢ccecees

6 - CONVERTING IBM PC BASIC PROGRAMS

6-1
6-2

6-3

COMMANDS AND STATEMENTS
WITH DIFFERENCES ¢ ¢ o e oo
LOADING PROGRAMS FROM
OTHER BASIC SYSTEMS
RANDOM ACCESS FILE
DATA DIFFERENCES ...

lntegers ® @ 0600 80000000 00000 00

5-14

Gauuununuon

-1
-1
-1
-1
-1
-1
-2

O ONNOWm

5-21

TABLE OF CONTENTS

SECTION 11 - THE TRACE WINDOWS

7 = UNDERSTANDING THE WINDOWS

7-1 KEYBOARD CONTROL ¢ ¢ e s eeosoesses 7-1
While the Print Screen (normal

program output) is Being Viewed ... 7-2

While a Trace Window is Being Viewed .. 7-3

While on the Command Line .v...00.. 7-4

7-2 THESTATUSLINE ¢ivveeccennoees 7-4

8 - ENTERING THE WINDOW ENVIRONMENT

8-1 OPENING THE DOOR TO WINDOWING .. 8-2
8-2 THE LIST TRACE WINDOW - L Key 8-2
Additional Features
of the List Trace Screen
8-3 THE "BACK UP" COMMAND - B Key ...
8-4 TIME TRACE WINDOW = TKEY ¢v e oo
8-5 SPLITTING THE SCREEN -
TWO WINDOWS ATONCE - SKey ... 8-8

ooc'ooo
N o wn

9 - TRACING PROGRAM VALUES

9-1 Variable Values « ¢ eeveeeeeeeoecoess 9-1
9-2 Array Window - AKey cvveveoeeeee 9-3
9-3 Two Dimensional

Single Precision Arrays - RKey 9-4

10 LOOPS, SUBROUTINES AND DATA STATEMENTS

10-1 FOR/NEXT WINDOW - FKey v.eve... 10-1
10-2 THE "CLICKER" - N Key ¢vceeeeeess 10-3
10-3 THE GOSUB WINDOW - G Key veee.o.. 10-3
10-4 DATAWINDOW-DKey veeeeeseee. 10-4

TABLE OF CONTENTS

11 - PROGRAM OUTPUT

11-1 Print Screen =P Key .ceceeececccocees 11-1
11-2 Full Execute on Print Screen - X Key ... 11-2
11-3 Print Trace Window - * (Prtsc) Key ... 11-2
11-4 Print/List Window -

Q Key (adaptive L and * windows) .. 11-3

12 - ADVANCED TRACING

12-1 THE FILE

INPUT/OUTPUT WINDOW - | Key ... 12-1
12-2 THE PSEUDO CODE WINDOW - M Key .. 12-2
12-3 THE MEMORY

DISPLAY WINDOW - YKey «cccese. 12-4

SECTION 111 - BREAKPOINT SETTING AND ERROR MESSAGES
13 - BREAKPOINT SETTING
14 - ERROR MESSAGES

14-1 SYNTAX ERRORS ¢ ccveocecocsocss 141
14-2 RUN TIMEERRORS «vceeceocecces 14-1
14-3 LISTINGOFERRORS .ceecocecscee 14-2
14-4 SEMI-COMPILE ERROR MESSACES 14-2

14-5 NUMERICALLY LISTED ERROR CODES .. 14-6
14-6 ALPHABETICAL

LISTING OF ERROR CODES 14-12

TABLE OF CONTENTS

APPENDICES

Appendix A - Professional BASIC™ DIFFERENCES
Appendix B - IMMEDIATE MODE COMMANDS
Appendix C - SPEED AND ACCURACY

Appendix D - ENTERING ASCIl VALUES

INDEX

1.

INTRODUCTION

A new world of programming productivity and fun awaits
you! Professional BASIC™ is the first of its kind -- a familiar
programming language with windowing and other facilities for
the pro or the beginner. With Professional BASIC™ program-
ming can become a productive and even playful activity. All
the tools you need for understanding how a program really
works are available at a keystroke. We think you will find the
experience of programming in Professional BASIC™ a very satis-
fying one.

While Professional BASIC™ is patterned after IBM PC
BASIC, there are many enhancements. These include:

° 8087 support

° Ability to access all available memory in the PC

° Windowing -- dynamic tracing of an executing
program

° Semicompiler language

° Dynamic Syntax Checker™

° Save programs and merge code without line
numbers

° Labeled line referencing

° Large integer numbers £2,147,438,647

° Large real numbers 10 <308 (double precision) or

10 =38 (single precision)

INTRODUCTION 1-2

) EXITFOR and EXITWHILE statements
° and many other innovative features

In a short time you will be able to go through most of this
manual and get a good feel for how Professional BASIC™ can
help you program better and faster. Professional BASIC™
provides you with a wealth of useful programming tools, so set
aside some time to go through the manual and the sample
programs,

IMPORTANT: Please take a moment now to fill out and
return the enclosed registration card. This will guarantee you
automatic access to information on updates and new releases of
this new system. Take advantage of this offer!

1-1 REQUIREMENTS
Professional BASIC™ requires:

IBM PC, XT, or Portable PC

at least 256k of RAM memory (384k+ preferred)
One disk drive

PC DOS 2.x operating system

Optional - 8087 numeric coprocessor.

Professional BASIC™ will also run on many IBM PC compatible
machines including COMPAQ and Columbia as long as the above
requirements are met,

INTRODUCTION 1-3

1-2 SYSTEM BACKUP

Before beginning to use Professional BASIC™ you should
make a backup copy of both Professional BASIC™ system disks.
To do this, format a new disk with the command:

A>format b:

with a DOS 2.0 or 2.1 disk in drive A and a blank disk in drive
B. (If you have a one disk system you will be prompted to
switch disks in your drive when appropriate.) Then replace the
DOS disk with the Professional BASIC™ system disk and enter
the following command at the DOS > prompt:

A>copy *.* b:

This will copy all the Professional BASIC™ files to the newly
formatted disk in drive B. (If you have a one disk system you
will be prompted to switch between the two disks when appro-
priate.) Remove the original system disk and store it in a safe
place.

1-3 STARTING Professional BASIC™ DEMO

There are two versions of Professional BASIC™ on your
system disks. System disk A contains the program file PB.EXE.
This version requires the 8087 numeric coprocessor. System
disk B contains PB8.EXE. It does not require an 8087. On both
disks are a series of demo programs which will be useful in
showing the various features and windows provided by Profes-
sional BASIC™. If you do not have an 8087, use the disk with
PB8. Please refer to Appendix C for more information on the
differences between the two versions.

rPI‘DFESEiDI‘IE.l

HRASIC

Copyright 19684 Dr. Neil Bennett All rights reserved.
Morgan Computing Cospany, Inc.
10402 N. Central Expressway, Suite 210
Dallas, Texas 73231
This systems has 655360 bytes & 8087 Serial ®-

Press any key to continue.

FIGURE 1-1 Copyright notice screen

INTRODUCTION 1-4

Professional BASIC™ has a built-in demonstration program
that displays the various program-trace windowing facilities.
To get an idea of the unique program tracing capabilities in the
Professional BASIC™ system try the following demonstration.

NOTE TO THE EAGER USER: If you are anxious to try the
program, skip to Chapters 4 and 5 after looking over the
material in Chapters 2 and 3 to understand the differences
between Professional BASIC™ and IBM PC BASIC.

If you have an 8087, place a copy of the Professional
BASIC™ System Disk A you just made in drive A, and at the DOS
A> prompt enter:

A>pb (System disk A)

If you do not have an 8087, then place System Disk B in
drive A and enter:

A>pb8 (System disk B)

Professional BASIC™ will be loaded into your machine and
the copyright notice screen will be displayed. If you do not
touch the keyboard, a self-running demonstration will start in
about 15 seconds and will run for approximately 5 minutes. The
demonstration is not just a simulation of the system; it is an
actual program being loaded and run. To exit from the demo
after the program begins executing, press the <break> key
twice (the key at the far upper right corner of the keyboard).
(If you press the <space bar> before the demo begins, the
screen will clear and you will be on the command screen. From
the command screen you may perform the usual LOAD, SAVE,
RUN, and EDIT operations. See Chapters 4 and 5 for more on
loading, saving, running, and editing programs.)

26 i 25 2
41 gwertyuiopjnext n2,nl

‘2 rem OQQQQﬁhﬁ!IQQQQ.QQ..OQR!Q‘.'..QQ

43 rem now make diagonal elements of

44 rem x 1 by dividing rows of x by

45 rem x(nl,nl). do same to y

‘6 rem RARARARARRRRARNRRARARNARARRAANRARS

47 for nl=1 to a

48 t=x(nl,nl)

49 x(nl,nl)=1,

S0 for n2=l1 to @

51 y(nl,n2)=y(nl,n2)/t

next n2,n

53 print:print " and the inverse is”

54 for nl=1 to a

$S for n2=1 to a

86 if n2=4 then print tab(6l);y(nl,n2) else print tab(20*n2-19);y(nl,n2)s

57 next n2

58 next nl

59 goto start

60 data 1 r 8, 3, 02
61 data .2 , 1 sy o3 , .1
62 data .1 , .1 , 1 v ol
63 data -.2 , .2 , .3 ,1

VVVVVVVVVVVVYVVVVVVVVVYVVVY
w
~

run

FIGURE 1-2 Screen during semi-compile

INTRODUCTION 1-5

The first step of the demonstration is the loading of a
program. As part of the loading process the program is listed
on the screen. During loading, the program is checked for
syntax errors and numerous other set-up operations are
performed. Then the "run® instruction is given to initiate
execution. At this point, Professional BASIC™ performs a
*semi-compilation”. If there were any errors in the program
involving the flow of execution (e.g., improper GOTO's,
GOSUB's, FOR/NEXT loops, etc.) they would be brought to your
attention. After about 2 seconds, the semi-compile is
completed and the program begins executing. Thus, both the
*load" and "run® operations perform a lot of error checking as
well as other initialization processes. When running a program
in Professional BASIC™ this semi-compile is only done once,
unless you edit the program. Therefore, future RUN statements
will execute instantly for that program.

What is " Semi-Compiling*

A normal interpreter BASIC begins execution immediately
after a "RUN" command is given, performing a "translation® of
each instruction as it is executed. In Professional BASIC™
much of this work is done "up front". As a result, several
advantages are gained:

° the program executes faster overall
°® arithmetic statements are transformed from BASIC
source code into a form closer to machine

language - a "pseudo code® form

o symbol tables are created to allow rapid access to
variables and arrays

Run number is 2 06-05-1984 12:14:17
The X matrix is
1 .4 .3 .2
.2 1 .3) .1
.1 .1 1 o1
-.2 .2 .3 1
and the inverse is
1.059293 -+.3762828 -.1573546 -.1584949
-.2063854 1.117446 -.2599772 -.04446978
-.1140251 -.04561003 1.071836 -.07981756
«2873432 -.2850627 -.3010263 1.00114
FIGURE 1-3 Typical output screen of self-running dem
41 1072 000 com hold x - 1 full £ 3 g0 25 1VO
35 if n2=nl then
goto gwertyuiop
36 f=x(n2,nl)/x(nl,nl)
37 for n3=1 to a
38 if n3=nl then
x(n2,n3)=0,0
39 if n3>nl then
x(n2,n3)=x(n2,n3)-£f*x(nl,n3)
40 if n3<=nl then

gwertyuiop;next n2

y(n2,n3)=y(n2,n3)-f*y(nl,n3)
inex ke : :

.0l

rem
rem
rem
rem
rem
for
t=
x(
fo

AR RN AR RN RN RN AR AN AN AR RN AT NN S
now make diagonal elements of

x 1 by dividing rows of x by
x(nl,nl). do same to

AR AR RS2 2222222222222 222 2]
nl=]l to a

x(nl,nl)

nl,nl)=1.

r n2=1 to a

y(nl,n2)=y(nl,n2)/t

next n2

FIGURE 1-4

Initial trace screen of the self-running dem

INTRODUCTION 1-6

. all syntax and control errors have been noted.
Hence, these types of errors (or "bugs") will never
halt execution once it starts

° actual memory locations are found and used for
the GOTO and GOSUB instructions to speed up
these transfer operations.

The Demonstration Program

Back to the demo . . . The first thing you will see on the
screen is the normal output of the program. The program is
inverting a matrix over and over again. This may not mean a
lot to you. But don't worry - just look at the various screen
windows that will appear.

After the program has run for a few seconds the system
*switches the channel." A listing of the program with a
*white line" flashing about the screen is now displayed, showing
program control moving from statement to statement. This
trace of the program listing can be stopped and started using
the following keys:

° Press the <space bar> to stop the program.
) Press the <Enter> key to resume trace execution,
® After you press the <space bar> to halt program

execution, each additional press of the <space
bar> will cause one instruction to be executed.

Using the <space bar>, it is possible to walk through the
execution of the program and to see each instruction executed
in turn in a slow and controlled fashion.

Continuing with the demonstration (if in single step mode,
press the <Enter> key), several other windows will be shown.

21 1197 c step f 1 g 0 25 2 vpO

‘2 rem AARRRAARRRANANRRRARARARNARORNR RN

43 rem now make diagonal elements of

44 rem x 1 by dividing rows of x by

45 rem x(nl,nl). do same to

‘G tem ARRARARARRRARARAARRARARARRANRARRS

47 for nl=1 to a .

48 t=x(nl,nl)

49 x(nl,nl)=1,

50 for n2=1 to a

51 y(nl,n2)=y(nl,n2)/t

52 next n2,nl

print:print * and the inverse is"

54 for nl=l to a

55 for n2=1 to a

56 1if n!-; then print tab(61);y(nl,n2) else print tab(20%n2-19);y(nl,n2);
n

VVVVVVVVVVVVVVVVVVVVVVYV
w
-

57 next
58 next nl
59 goto start
60 data 1, .4 , .3 , .2
61 data .2 , 1 r o3 , .1
62 data .1 , .1 ,1 , .1
63 data -.2 , .2 , .3 ,1
FIGURE 1-5 Command screen, after <Break> has been pr«

twice to exit demo

INTRODUCTION 1-7

For now just watch the demonstration, halting it with the
<space bar> and continuing it with the <Enter> key. Notice
that the program provides various ways to view execution. The
demonstration allows you to become familiar with the various
windows which you will learn more about later in this manual.

° Press <Break> twice to stop the demonstration
(after the loaded program has begun to execute).

° After you stop the demonstration, if you want to
exit the Professional BASIC™ system, press the F7
function key (or type in the command *system")
and then press the <Enter> key.

1-4 WHY A NEW APPROACH

Normally, you write and run a program and see the results
only on the screen or printer. You verify that it has operated
properly by examining and interpreting the output it generates.
For the most part, the program itself is working away unseen.,
There is no way to tell if it is performing as expected except by
viewing and interpreting the output. If the program does not
work properly it can be quite difficult to find out what is going
wrong. Errors in the code may prevent the normal output from
appearing or, sometimes worse, output may be produced that is
erroneous in subtle ways. Sometimes programming and
debugging can be like groping in the dark, making adjustments
which will, hopefully, put the program onto the desired track.

Debugging programs can be part art and part science.
There are systematic procedures a programmer can often employ
to analyze how a program is operating and why it is not func-
tioning as it should. However, many times an error can be so
difficult to find that only by playing "hunches® can the pro-
grammer straighten out the erroneous sections of code.

INTRODUCTION 1-8

Professional BASIC™ provides an entirely new environment
in which a programmer can work. At last, a program creation,
analysis, and debugging system was designed and written from
the ground up to aid the beginner as well as the advanced pro-
grammer to the maximum extent possible. Many years of
careful thought have gone into the concepts behind Professional
BASIC™ by a designer who has rethought the whole process of
computer-programmer interface. Because of the power of the
16-bit microcomputer, with its large memory, it was feasible to
create a new and radical departure from traditional wisdom in
the design of the environment for a programming language.

As stated before, a normal programming language has one
means of communication -- the output designed by the pro-
grammer to be displayed or printed by the program itself. Now,
with Professional BASIC™, it is possible to view the execution of
a program in many different ways. It is possible to view the
actual set of program instructions in such a way that you can
see how each instruction step is executed, the sequence of
execution, and the effect upon every variable. And all of this is
easily accessed in a natural way by the user.

With this system, we expect the world of programming to
open up to a much wider audience than ever before. The
newcomer to the computer (and programming) can now have a
tool with which to learn the fundamentals of programming. For
the advanced programmer, Professional BASIC™ is a workshop
which can help to perfect the most complex program in a much
shorter time than has ever been the case before. We feel that
the whole approach to computer programming will be perma-
nently altered and enhanced with the advent of Professional
BASIC™.

INTRODUCTION 1-9

1-5 ROLE OF THE MANUAL

This manual is not intended to teach programming and it
cannot be used in place of your IBM PC BASIC manual. Instead,
it is a supplement. The basic operation of each command,
statement, and function within Professional BASIC™ is the same
as IBM PC BASIC unless specified otherwise in Chapter 3. Use
both manuals as your resource. In general, if you have a
question about how the BASIC language works, consult the IBM
manual or other reference guide on BASIC (there are many good
ones to choose from). If you have a question about the special
Professional BASIC™ windows, program creation, editing,
running, testing, storing, and loading, then refer to the Profes-
sional BASIC™ manual,

1-6 ORGANIZATION OF THE MANUAL

Section 1 introduces you to Professional BASIC™ and
describes the differences between it and IBM PC BASIC. It also
explains how to load and run a BASIC program and use the

built-in editor to create and change programs.

Section |l explains the tracing display windows and how to
use them for learning and debugging.

Section Ill discusses breakpoint setting for Professional
BASIC™ and includes a section on error messages.
1-7 HOW TO USE THE MANUAL

The next section of this manual describes the scope of the
language and how to load, edit, run, and save a program.

INTRODUCTION 1-10

Chapter 4 tells you how to load, run, and save programs in
Professional BASIC™. A short tutorial will lead you through
how it is done in Professional BASIC™ and point out some
differences from other BASICs.

Chapter 5 explains how the Professional BASIC™ editor
works by presenting a series of examples. Since the editor
functions differently than other BASICs it is important to go
through these exercises. Also, you will discover some new tools
for editing that are not available in other systems.

When you have finished with Section 1, you should be com-
fortable executing a BASIC program in a similar manner to using
the 1BM BASIC Interpreter.

Then proceed to Section Il. The introduction to Section Il
and Chapter 7 present important information about keyboard
control and the windowing environment. Note that the screen
on which commands are entered is separate from the screen on
which program output is displayed. Plus, all the trace windows
are also separately maintained. Thus if you were to run a
program without screen 1/0 (PRINT statements), your display
would be blank. In that case <Break> would return you to the
command screen or <Alt-S>, for instance, would put you into a
trace window.

Finally, Section 11l presents a few advanced topics and a
list of Professional BASIC™ error messages.

1-8 COMPATIBILITY WITH IBM PC BASIC

Since the language of Professional BASIC™ is patterned
after BASIC on the IBM PC, you will be able run programs that
work on that BASIC in Professional BASIC™ after a few modifi-
cations (some programs may not need to be altered at all).

INTRODUCTION 1-11

Professional BASIC™ has built-in features to aid you with your
conversion. You will not have to learn much that is new in
terms of the language (although there are some extensions you
should become familiar with and begin to use).

Once you understand the areas of compatibility between the
two languages you should be able to run programs under both
BASICs with little or no modification. See Chapter 6 for more
information.

1-9 COMPILING PROGRAMS

Use the 1BM BASIC compiler to compile programs developed
with Professional BASIC™. Of course, be sure to keep in mind
the differences between the two systems to maintain compati-
bility.

SECTION |

PROGRAMMING WI’TI:AH
Professional BASIC

INTRODUCTION
TO SECTION I

e

In this section of the manual you will learn about the many
enhancements offered by Professional BASIC™ and about the
differences between Professional BASIC™ and IBM PC BASIC.

Chapter 2 describes some of the differences between Pro-
fessional BASIC™ and IBM PC BASIC, in areas such as program
line length, ranges of numbers, array dimensioning, and file
handling.

Chapter 3 explains the differences in commands and state-
ments that exist between Professional BASIC™ and IBM PC
BASIC.

Chapter 4 discusses loading, running and 'saving programs.

Chapter 5 explains the Professional BASIC™ editor and how
to effectively use it to create and edit your own programs.
Chapter 5 also introduces the Dynamic Syntax Checker™ and
gives a brief synopsis of some of the new commands and
enhancements to the programing environment including line
labels, long variable names, and other new commands.

Chapter 6 explains how to convert and run your programs
from 1BM PC BASIC to Professional BASIC™.

INTRODUCTION TO SECTION 1 1-ii

By the time you finish reading Section | you should know

how to:

Load a program from diskette into memory. Many
programs can exist on the diskette, but only one
may be in memory for editing or execution at any
given moment.

Run a program.

Use the built-in editor to create and edit lines of
BASIC program code.

Save a created program to a diskette once it is
created (with or without line numbers).

Convert your existing BASIC programs to run
under Professional BASIC™.

It is not the intention of this manual to actually teach
BASIC. It is presumed that you are already familiar with how to
program and, moreover, have some experience with doing so in
IBM PC BASIC. If you are not familiar with BASIC, find a text
on how to program in BASIC and use it in conjunction with this
manual to create, edit, run, and debug programs.

The specific commands discussed in this Section are:

LOAD - Read a program from disk into memory.
RUN & SRUN - Cause the program in memory to
begin execution,

SAVE - Write to disk the program currently in
memory.

SAVEU - Write the program currently in memory
to disk without line numbers.

EDIT - Display a line of code for editing.

LIST & LLIST - Display or print the current
program or a section of it.

INTRODUCTION TO SECTION 1 1-iii

DELETE - Delete a line or set of lines from the
program in memory.

FIND & FINDL - Display every occurrence of a
specified variable or label.

SORTV & SORTL - Display a sorted list of
variables or line labels,

SEARCH & SEARCHL - Display every occurrence
of a specified string (e.g., key word like "PRINT"
or "NEXT" or a label).

INCR - sets the increment value for automati-
cally generating line numbers, for the entry of
new lines of program code.

CLS - clear the command screen.

NEW = clear the current program from memory
and clear the screen.

SYSTEM - exit to the operating system (PC
DOS).

Some of the special features of Professional BASIC to be
discussed in this section of the manual include:

Operation of the built-in line editor. (Chapter 5)
The Dynamic Syntax Checker™ - Each keystroke
is monitored by the system for syntactic correct-
ness. (Chapter 5)

Use of the IBM PC function keys to speed editing.
(Section 5-12)

Use of line labels instead of line numbers in GOTO
and GOSUB statements. (Section 5-1)

Use of variable names and how to effectively use
and enter long variable names., (Sections 5-1)
How to load, merge and save programs and
sections of code without line numbers in Profes-
sional BASIC™,

INTRODUCTION TO SECTION 1 I-iv

How Professional BASIC™ runs programs created
by another system. (Chapter 6)

NOTES: 1. All the commands and operations discussed in this

Section are entered on what is called the
"Command Screen". There is a difference in Pro-
fessional BASIC™ between the screen to which
program output is sent by the PRINT statement
(the "Print Screen") and the screen on which
commands are entered and programs created,
edited, and listed (the *Command Screen"). Each
is maintained separately and you can switch
between them before, during, and after the
execution of a program. Action on one screen
does not disturb what is displayed on the other.

<Alt P> switches from the Command Screen to the
Print Screen.

<Break> halts (suspends) program execution and
switches to the Command Screen.

<Enter> switches from the Command Screen to
the Print Screen (if you had just been there and
had pressed <Break>) or to the last trace window
viewed and resumes execution.

The <Esc> key is used to abort and erase the entry
of any command or line of code after you have
begun to type it in on the Command Screen.

In Section Il of the manual you will learn more about the
power of Professional BASIC™ - the tracing windows. These
windows add another dimension to the process of running
programs beyond what is described in this Section. It is
essential, however, to understand the concepts presented here
before you can effectively work with the system,

INTRODUCTION TO SECTION | I-v

COMPATIBILITY WITH IBM PC BASIC
- RUNTIME SYSTEM AND COMPILING

Many of your existing programs may run under Professional
BASIC™ with only minor modifications. Some programs may
require more work. However, after changes are made, the
program should run under both systems. Hence, programs
developed with Professional BASIC™ can be distributed and run
with the IBM PC BASIC system. There is no need for others
who need to run programs you develop to actually have Profes-
sional BASIC™ (unless your program needs to access a large
amount of memory).

To compile a Professional BASIC™ program, use the
compiler available from IBM. Again this will work as long as
you do not need to access a large amount of memory and you
have adhered to the requirements of the compiler. T

2.

Professional BASIC
DIFFERENCES

Professional BASIC™ is intended to provide essentially the
same BASIC language as is now provided with the IBM PC
BASIC., However, there are differences that must be explained
to make the transition to Professional BASIC™. In this chapter
some fundamental differences in the system and its capabilities
are discussed. Differences in specific commands and state-
ments are discussed in Chapter 3.

2-1 IMMEDIATE MODE
In Professional BASIC™ the immediate mode (meaning that
the Command Screen is displayed and there is a blinking cursor
after the > prompt) provides the functions for program
debugging but does not allow immediate execution of all BASIC
statements. The principal uses of immediate mode are to:
@ Enter arithmetic expressions for immediate evaluation

e Display and set the value of a variable

e Display a list of disk files (directory) and rename or
delete files

i

>b:
>files
B:\
PB.EXE 157,568 PB8.EXE
EXAMPLE.BAS 767 ERROR.BAS
POKEHEX .BAS ‘107 DEMA.BAS
DEMB.BAS 1,365 DEMC.BAS
DEMD.BAS 667 DEME.BAS
DEMF .BAS 605 DEMG.BAS
DEMH.BAS 546 DEMI.BAS
DEMJ .BAS 421 DEMK.BAS
DEML.BAS 1,075 DEMM.BAS
DEMN.BAS 551 DEMP .BAS
DEMR.BAS 202 DEMS.BAS
DEMW.BAS 467 DEMX.BAS
DEMZ .BAS 330 WINDOW.BAS
NOLINE.BAS 242 NOLINEl.BAS
NOLINE2.BAS 251

29 entries. 337,672 bytes total.
>a=3
>b=4
>a*b
The result is 12

25

162,432
1,024
969
742
1,029
518
192
256
2,180
1,075
577
399
869
246

8,192 bytes free.

_J

FIGURE 2-1 Screen displaying
execution of default drive change, the

FILES command
operations

and

immediate mode

some

arithmetic

Professional BASIC™ DIFFERENCES 2-2

® Make and remove subdirectories or change from one
subdirectory to another

e Change the default drive
® Load, run, and edit programs
® Enter new programs

Pressing <Break> from anywhere in the system will place
you on the Command Screen. (If a Control Master™ file is
running, such as the self-running demo, press <Break> twice.)

An example of an immediate mode command is finding the
current value of a variable. In regular BASIC this would be
done by typing "PRINT X" and <Enter>, then the current value
of the variable "X" is displayed on the next line. In Profes-
sional BASIC™, however, simply enter *X" after the prompt and
the current value will be displayed. To change a value, enter,
for example, "X=21" and the value of X will become 21.

Appendix B contains a summary of the commands which can
be entered while in the Immediate Mode.

2-2 BASIC PROGRAM LINES

Line length can be up to 311 characters, or about 4 screen
lines.

Line _numbers are used within the Professional BASIC™
system, and can be integers from 1 to 99999. However, you
may write programs without line numbers with an external text
editor by merely making sure that each line begins with a blank
space. Professional BASIC™ will assign line numbers when the

Professional BASIC™ DIFFERENCES 2-3

program is brought into the system via the LOAD or MERGE
commands. You may save programs without line numbers via
the SAVEU command (see section 3-2).

Line number zero is not allowed.

Line labels are allowed. A line in a program can be given a
name, which can be used instead of the line number in GOTO
and GOSUB statements. The line label appears after the line
number, can be anylength, and must be followed by a semi-
colon (;).

Example: 100 start.of .main.routine; Print °Enter Data:

2-3 RANGES OF NUMERIC VALUES

Integer values may range from 2,147,483,647 to
-2,147,483,648. Integers are 32-bit integers and thus are four
bytes each. PC BASIC integers are 16-bit (2 bytes) with a
range of 32,767 to -32,768.

Professional BASIC™ permits real numbers between the
values of 1.67 x 10308 to 4.19 x 10-307 (double precision) and
3.37 x 1038 to 8.43 x 10~37 (single precision).

Professional BASIC™ DIFFERENCES 2-4

2-4 ARRAYS

Professional BASIC™ requires that all arrays must be
defined in a program with a dimension (DIM) statement.

If an array xyz(ab) is to be of size 100x100, then the
following statement must appear in the program:

20 dim xyz(100,100)

This will establish the maximum size of the array in each
dimension. (Variable names cannot be used to specify the size
of a dimension. Use integer numbers only.) An alternative
available in Professional BASIC™ is to use a form like the
following to accomplish exactly the same thing:

20 dim xyz(1 to 100,1 to 100)

The value of this latter form is apparent in a case where you
would like the first subscript to be a value other than 1.
Perhaps you would like the first subscript to begin with 1900.
The statement could be rewritten as follows:

20 dim xyz(1900 to 1999, 1 to 100)

This permits referencing an element in the array, such as
Xyz(1950,4), where a program may contain a set of statements
like:

100 input "Year to look up: *;year

110 input *Section number : ";section

120 print *Number of students in section =
*;xyz(year,section)

Professional BASIC™ DIFFERENCES 2-5

The year may be used in the array reference directly without
resorting to a translation routine, such as subtracting 1899 from
the year put in line 100.

Size of Arrays

Because (1) Professional BASIC™ can access all available
memory in the IBM PC and (2) array subscripts are 32-bit
integers and can be as large as two billion (instead of 32,767), it
is possible to have very large arrays.

You could specify a one dimensional array with 60,000
elements. Since single precision numbers and integers in Pro-
fessional BASIC™ occupy 4 bytes each, such an array of
numbers would occupy at least 240,000 bytes of memory in the
computer, provided you had sufficient memory to also accommo-
date the program, the BASIC system, and DOS.

The maximum number of dimensions for an array is limited
only by the length of a BASIC program line (311 characters).

2-5 FILE HANDLING

Professional BASIC supports both random and sequential
files. You may have up to 8 files open concurrently. If you
plan on using data files created by IBM PC BASIC programs
please pay special attention to Section 6-3 because Professional
BASIC™ uses the IEEE floating point format instead of the
Microsoft storage format.

Professional BASIC™ DIFFERENCES 2-6

2-6 DISK FILES
File numbers

Currently files may only be numbered from 1 to 8.
Number of records in a file

Professional BASIC™ stores the number of records in an
unsigned double word integer. Therefore the number of records
in a file can be in excess of 4 billion.
Number of bytes in a record

The number of bytes per record is stored in an unsigned
single word integer. This puts the upper limit of bytes per
record at 65,535.
Number of bytes per file

The total number of bytes in a file is the number of records
in the file times the number of bytes per record and cannot
exceed 4,294,967,296 bytes. This exceeds the storage capability
of most storage devuces on the PC.

File buffers

The initial implementation of Professional BASIC™ restricts
the disk file system as follows:

e Only files numbered 1 through 8 may be opened

e Files numbered 1 through 4 may have a maximum of 512
bytes per record. Files numbered 5 through 8 may have
a maximum of 256 bytes per record. This cannot
currently be redefined.

Professional BASIC™ DIFFERENCES 2-7

2-7 FILE ACCESS STATEMENTS

In general, the sequential and random file access state-
ments will function in the same manner as they do under IBM PC
BASIC. The possible exception to this is the LOC statement.

For random files, the LOC statement functions the same as
in IBM PC BASIC. It returns the record number of the last
record read from or written to the file. However, in sequential
files, LOC returns the number of the last access to the file.
That is, it returns a count of the number of reads or writes to
the file, instead of the number of 128 byte blocks (records) of
data read or written.

2-8 °"STANDARD" INPUT/OUTPUT FILES

There are five "standard" files which IBM DOS Version
2.XX always maintains as open files. They are:

standard input,

standard output,

standard error,

standard auxiliary device and
standard printer.

A more complete description of them can be found in the DOS
2.XX manual,

The default number of open files in Professional BASIC™ is
five (5). By creating a file called CONFIG.SYS (see the IBM
DOS Version 2.XX manual chapter titled "Configuring Your
System") that contains the one text line FILES=11 up to 8
files may be opened simultaneously. Otherwise 5 files can be
opened at one time, but no more. The files numbered one

Professional BASIC™ DIFFERENCES 2-8

through four (1 through 4) can have a record length up to 512.
The files numbered five through eight (5 through 8) can have a
maximum record length of 256.

2-9 COMPILING Professional BASIC™ PROGRAMS

At this time there is no compiler specifically designed for
Professional BASIC™. However, because of the high degree of
compatibility with I1BM PC BASIC, the IBM BASIC Compiler can
be used if the program development under Professional BASIC™
takes into account the language features and requirements of
the Compiler.

If you wish to compile a program using the IBM BASIC
Compiler, then in addition to the memory limitation of the
compiler, do not use line labels, the optional format of the DIM
statement, DIM(a to b), or the EXITFOR and EXITWHILE state-
ments.

2-10 RUNTIME SYSTEM - INTERPRETER

Due to the language similarities, you can distribute
programs to others who do not have Professional BASIC™, as
long as these programs conform to the requirements of the IBM
PC BASIC interpreter. If these requirements are met, programs
can be developed under Professional BASIC™ and then distri-
buted to run under the I1BM PC BASIC interpreter.

2-11 CODING IN UPPER OR LOWER CASE

The editor does not care if you type code in upper or lower
case. Whatever is typed in will be maintained in that format.

Professional BASIC™ DIFFERENCES 2-9

The system does not transform lower case letters into upper
case letters. Upper and lower case are not considered unique
(i.e., NaMe and nAmE are the same).

2-12 THE CURSOR

In Professional BASIC™ the cursor cannot be turned on or
off nor can its size be changed by the LOCATE statement. The
cursor is not normally displayed on the output screen but is kept
off until an INPUT, LINE INPUT, or INKEY$ statement is
encountered in the program. Then it is turned on until the
program moves on to another statement. The third, fourth, and
fifth parameters in a LOCATE statement will be accepted syn-
tactically by the system but will not have any effect.

2-13 THE TAB KEY

The tab key on the keyboard will insert a tab character,
chr$(9), in the program file if pressed while creating or editing
a line of code. If a tab character is in a PRINT statement, it
will cause the cursor location to be moved to the next tab
location on the screen or printer, where the tab locations are at
columns 1, 9, 17, 25, etc. (every 8th column).

2-14 COMMAND LINE PARAMETERS

When loading Professional BASIC™ the system does not
recognize any parameters passed to the system such as a
filename or size of file buffers,

Professional BASIC™ DIFFERENCES 2-10

2-15 MEMORY DISK, PRINT SPOOLER,
AND OTHER UTILITIES - COMPATIBILITY

Professional BASIC™ may not work properly with some
programs which manage the system memory and designate a
portion of RAM memory for a memory disk drive or a print
buffer. Also, other programs that are designed to run concur-
rently and attempt to alter the keyboard or are activiatated by
special key combinations (like <Ctrl-Alt>) will not work with
the current version of Professional BASIC™.

For those programs which do operate with Professional
BASIC™, the total amount of memory available may be reduced
and will be reflected in the number shown on the initial screen
when Professional BASIC™ is loaded.

2-16 COLOR GRAPHICS VS. MONOCHROME SCREEN

The performance of Professional BASIC™ is far superior on
the IBM monochrome screen system than on the color graphics
system. Scrolling on and writing to a display driven by the
color graphics adapter card are slower in order to avoid the
problem of "snow" on the screen. The system is not slowed
down on the COMPAQ computer, however.

3.

COMMANDS & STATEMENTS -
DIFFERENCES

In this chapter you will learn about some of the specific
differences in commands and statements between Professional
BASIC™ and IBM PC BASIC as well as some of the new features
offered by Professional BASIC™. In most cases you will find
that the commands and statements function under Professional
BASIC™ in exactly the same way they do under IBM PC BASIC.
If you have a specific question regarding a command or
statement, first reference your IBM PC BASIC manual and then
the Professional BASIC™ manual to check for differences.
Since Professional BASIC™ is being implemented in stages,
section 3-4 contains a list of those commands and statements
not currently implemented.

3-1 COMMANDS and STATEMENTS - REPLACED

The following commands are not implemented in Profes-
sional BASIC™. Their functions, however, are included in the
Professional BASIC™ programming environment.

AUTO (see Section 5.3)
TROFF
TRON

COMMANDS & STATEMENTS - DIFFERENCES 3-2

3-2 COMMANDS and STATEMENTS - NEW

The following commands are new:

a:, b:, ...

BEEPHI

BEEPLO

BREAK

FIND

FINDL

FINETRACE

INCR

n

Change the logged drive.

Like the BEEP command, but with a
higher pitch.

Like the BEEP command, but with a
lower pitch.

Set a breakpoint on a designated line
(line number or line label).

Find a specified variable, label, or line
number and display on the command
screen the lines in which it occurs.
This command is for immediate mode
only.

Find a specified variable, label, or line
number and highlight it everywhere it
occurs in the listing. This command is
for immediate mode only.

Turn on the immediate mode option to
see the evaluation of an arithmetic
expression one step at a time.

Set the auto line numbering increment
to a specified value. This command is
for immediate mode only.

COMMANDS & STATEMENTS - DIFFERENCES 3-3

NOBREAK n

NOBREAKALL

NOEX

NOFINETRACE

SAVEU

SEARCH a
SEARCHL a
SETTOP n

Turn off a designated breakpoint
(n=line number or label).

Turn off all breakpoints.

Reset ‘"executed code" flags (L
window, option 2).

Turn off the immediate mode arith-
metic feature.

This command allows you to save
programs without line numbers. It
produces an ASCIl text file with the
extension .BAS and one leading blank
at the beginning of each line. In all
other respects it behaves like the
SAVE command.

Search for a specified group of char-
acters and display on the command
screen each line that contains the
group of characters. This command is
for immediate mode only.

Search for a specified group of char-
acters and highlight the group every-
where it occurs in the listing. This
command is for immediate mode only.

Set the top of memory accessible by
the system to a designated value.
The parameter n is a hexadecimal |
number. Thus to set the top of
available memory to 320k, for

15 4883 c full £ 1 g0 25 2 vP0
06000 Start of PB system 24576 222496
3c520 Start of BASIC source 247072 5920
3dc40 Start of main symbol table area 252992 60
3dc7c Start of pcode 253052 2120
3ed4c4 Start of arrays 255172 128
3e544 Start of constants 255300 278
3e65a Start of free space 255578 3378
3f38c Start of string area 258956 2
3f38e Start of 2nd symbol table area 258958 98
3£3f0 Start of file buffers 259056 3072
3£££f0 Logical end of memory 262128 0

Physical end of memory 262128
FIGURE 3-1 This is an example of the output produced

by the ,SIZE command. The self-running
demo is currently loaded.

COMMANDS & STATEMENTS - DIFFERENCES 3-4

SORTV

SORTL

SRUN

,BUFFERS

SIZE

instance, the command would be:
SETTOP 50000. To set the top to
512k: SETTOP 80000.

Display an alphabetical listing of all
variables and array names on the
screen,

Display an alphabetical listing of all
line labels on the screen.

Prepare to run (just as if the RUN
command had been given), but wait at
the first line of code on the List Trace
window for you to press <Enter> or
<space bar> to begin executing in-
structions.

Shows list of file buffers.

Shows information on the use of
system memory.

The following program statements are new:

EXITFOR

EXITWHILE

Exit the current FOR loop and
continue execution with the first in-
struction after the NEXT statement.

Exit the current WHILE loop and
continue execution with the first in-
struction after the WEND statement.

COMMANDS & STATEMENTS - DIFFERENCES 3-5

3-3 COMMANDS and STATEMENTS - WITH DIFFERENCES

The following commands and statements are implemented
with the differences described here.

DIM

EDIT

FOR/NEXT

All array variables must be dimen-
sioned. There is no default value for
the size of arrays and variable dimen-
sions are not allowed. You must use
integer values only in a DIM
statement, not variable names.

There is no "EDIT ." option. Press
the F8 key to display for edit the last
line edited.

The FOR/NEXT statements must be
physically and logically paired. That
is, for each and every FOR there must
be a matching NEXT. Also,
FOR/NEXT loops cannot overlap each
other., When nesting loops, the inner
loops must be completely contained
within the outer loops. Multiple FOR
statements can be attached to a
single NEXT statement only if the
NEXT lists all the corresponding
indexes (i.e. next i,j,k). Multiple
NEXT statements cannot be attached
to a single FOR. That is, NEXT
statements cannot be hidden in condi-
tional statements. Instead of using a
NEXT in the conditional statement you
should use a GOTO statement to direct
control to the appropriate NEXT.

COMMANDS & STATEMENTS - DIFFERENCES 3-6

LOAD

LOCATE

FIELD

The quotation marks surrounding the
filespec are not needed, but may be
used if desired. A filespec extension
of .BAS is assumed if no extension is
supplied. if a LOAD command is
entered with no filename specified,
the last file loaded or saved will be
loaded again. There is no ",R" option
to "Load and Run" a program. LOAD
is an immediate mode command and is
not available as a program statement.
The LOAD operation does a number of
things: the file is read from disk,
each line of code is checked for
proper syntax and marked if in error,
and the system is "seeded" to set up
the multi-window capabilities. Thus
the load takes longer than it does in
BASICA.

The third parameter in the LOCATE
statement which is used to turn the
cursor on/off is accepted by the
syntax checker in the system, but
does not actually turn the cursor on
or off when the statement s
executed. Cursor size (4th and 5th
parameters) cannot be controlled
either.

Array elements cannot be used in the
FIELD statement, Only unsubscripted
variables can be used. That is, "20 as
ABC$" is permitted but "20 as
ABC$(3)" is not.

COMMANDS & STATEMENTS - DIFFERENCES 3-7

FILES

MERGE

RUN

SAVE

WHILE/WEND

Quotes are not needed. You may
specify a drive letter followed by a
colon to get a list of all files. File
sizes in bytes, total number of files,
bytes in the displayed files, and bytes
remaining on the disk are also
presented.

You can merge lines of code without
line numbers and place that code
anywhere you choose in the current
program. See Section 5-14.

This command does not have the "line
number" or *,R" options.

Same as for LOAD above. The
filespec extension of .BAS will be
added if none is supplied. If no
filename is specified in the command,
the name of the last program loaded
or saved will be used. The default
filename is shown on the <Y> trace
screen. SAVE is an immediate mode
command and is not available as a
program statement. The file saved is
an ASCIl file and thus is not in
tokenized form.

Comments above on FOR/NEXT also
apply for pairing of WHILE/WEND
statements.

COMMANDS & STATEMENTS - DIFFERENCES 3-8

3-4 COMMANDS and STATEMENTS - NOT YET AVAILABLE

The Professional BASIC™ system is being implemented in stages.
At this time, the following commands and statements are not
available for use.

BLOAD ERASE ON TIMER STICK
BSAVE GET(graphics) OPEN *COM STRIG
CALL INPUTS PEN STRIG(n)
CLEAR ON COM(n) PLAY USR
COM(n) ON PEN PLAY(n) VARPTR
DEF USR ON PLAY PMAP VARPTRS
DRAW ON STRIG(n) PUT (graphics) VIEW
WINDOW

11/01/84

The following is a list of commands, functions, and statements
supported in Version 2.0x of Professional BASIC™:

ABS DELETE INPUT# MERGE PRINT # SRI
ASC DIM INSTR MID$ PRINT # USING STC
ATN EDIT INT MKDIR PSET STF
AUTO* END KEY MKKI$,MKS$,MKD$ PUT (files) STF
BEEP (BEEPHI™ & BEEPLO**) KEY(n) MOTOR RANDOMIZE SW,
CDBL EOF KILL NAME READ SY¢
CHAIN ERASE NEW REM TAI
CHDIR ERROR NEXT RENUM TA
CHR$ ERR,ERL LEFT$ OCT$ RESET TIv
CIRCLE EXITFOR** LEN ON ERROR RESUME

CINT EXITWHILE** LET ON..GOSUB RESTORE TIV
CLOSE EXP LINE ON..GOTO RETURN TRC
CLS FIELD LINE INPUT ON KEY(n) RIGHTS$ TRC
COLOR FILES LINE INPUT# OPEN COM RMDIR VAI
COMMON FIX LIST OPEN RND

CONT FOR LLIST OPTION BASE RSET WA
cos FRE LOAD ouT RUN WH
CSNG GET (files) LoC PAINT SAVE WE
CSRLIN GOSUB LOCATE PEEK SCREEN
CVI,CVS,CVD GOTO LOF POINT SGN wiL
DATA HEX$ LOG POKE SIN WR
DATE$ IF LPOS POS SOUND WR
DEF FN INKEY LPRINT PRESET SPACES$

DEF SEG INP LPRINT USING PRINT SPC

DEF type INPUT LSET PRINT USING SQR

* This command is handled by Professional BASIC™ in the envi-
ronment.

** This command is in Professional BASIC, but not in IBM PC
BASIC.

4.

LOADING, RUNNING
& SAVING PROGRAMS

In order to become comfortable with running a program, we
are going to load a sample program that is provided on your
Professional BASIC™ disk. The program filename s
"EXAMPLE.BAS". (Note: If you have questions about the
operation of the editor, see the next chapter.)

First, start Professional BASIC™ by typing PB . (if
you have an 8087) or PB8 (if you don't) at the DOS prompt and
pressing <Enter>,

A>pb

Press any key after the initial screen appears. (If you did
not touch the keyboard a self-running demo would begin after
about 15 seconds. Press the <Break> key twice after the demo
program is loaded and running to exit it.)

You will now be on the Professional BASIC™ Command
Screen. This is where all commands to the Professional BASIC™
system are typed. The line at the top of the screen is called
the Status Line. (Explained in Chapter 7) The system prompt
consists of the greater than character (>) and a flashing rec-
tangular cursor which indicates that the system is waiting for
your input.

>load example

FIGURE 4-1

1e number of
structions during semi-compile

Screen showing LOAD command (before
<ENTER> is pressed). EXAMPLE.BAS is one
of the demos supplied on your system disk

60 LOCATE 1,8
70 PRINT "#tess

120 PRINT: PRINT:
140 PRINT
160 END

VVVVVVVVVVVVVVVVYV
o
-]

ﬂ

18 5

10 rem This program is a simple example tv allow the new user
20 rem to immediately load and run a program. It prints on the
30 rem screen and asks for input. After the input, a final
40 rem message is printed to the screen.

.

EXAMPLE PROGRAM aannan

80 PRINT “This program is a simple example to allow the new user"”
PRINT "to immediately load and run a program. It prints on the"
100 PRINT “screen and asks for input. After the input, a final”
110 PRINT "message is printed to the screen.”

PRINT "Press any key to continue...": LOCATE 8,30

130 AS$ = INKEYS$: IF A8 = "™ THEN GOTO 130
150 PRINT: PRINT "This is the last message.”

_

FIGURE 4-2

Command screen showing the
EXAMPLE.BAS program and the run
command just before the <ENTER> key is
pressed

LOADING, RUNNING, & SAVING PROGRAMS 4-2

Type the LOAD command as follows to load the demo
program EXAMPLE.BAS from your copy of the Professional
BASIC™ system disk:

>load example

You do not have to precede (or enclose) the filename with
quotes as is required in IBM PC BASIC. The program will list on
the screen as it loads. Every line of code is checked for proper
syntax as the program loads. If you wish to examine the
program in detail as it loads, you may suspend loading and enter
single step mode by pressing the <space bar>. Each succeeding
press of the <space bar> will cause one more line to be read
and loaded. To return to full speed loading, press the <Enter>
key. When the program is loaded, the cursor will reappear.

Type in the RUN command as follows:
>run

When the *RUN" command is entered there is a brief pause
before program execution begins. This pause occurs while
*semi-compilation® is performed. After the pause the screen
switches to the user output screen (See the "NOTES" in the
Introduction to Section I; Pg. I-iv). The line number being
compiled is displayed at the top of the screen. Since there are
multiple passes, the sequence of line numbers is displayed more
than once. For a long program, a few seconds may be needed
to perform the analysis. Once completed, the program will
execute significantly faster than an interpreted program, but
not as quickly as a fully compiled program. This semi-compila-
tion will only occur once if you do not edit or change your
program. The next time you enter RUN, it will begin to
execute instantly.

LOADING, RUNNING, & SAVING PROGRAMS 4-3

The sample program itself is very simple. It prints to the
screen and waits for a key input to continue (see Figure 4-2).
Press any key. Next, the program prints one more line and
ends., At the end of the program you are returned to the
command screen. To see the screen as it was at the end of
program execution, press <Alt P>, To return to the Command
Screen press the <Break> key (the key at the far upper right
corner of the keyboard that has the words *Scroll Lock® on the
top and "Break" on the front).

To exit from a running program and go to the Command
Screen, press the <Break> key. You may also press <Ctrl
Break>, as you would normally do in IBM PC BASIC to halt
(suspend) an executing program. Both methods produce the
same result.

The advantage to having separate screens for entering
commands and showing program output is that it is possible to
perform various operations like listing lines of code, examining
various variable values, setting variable values, etc. while not
disturbing the output screen. Then when program execution is
continued from the point of suspension, the output screen is left
just as it was. The more complex the programs you write and
debug, the more you will appreciate this feature.

To save the program, use the SAVE command as follows:
>save example
You could just enter the command SAVE by itself. The
current file would be saved using the last filespec referenced in

a SAVE or LOAD. A NEW command nullifies this option until
another SAVE or LOAD with a specified filename is executed.

LOADING, RUNNING, & SAVING PROGRAMS 4-4

You do not have the option of saving a file in *protected”
or "tokenized" format as in IBM PC BASIC. Professional
BASIC™ saves and loads programs only in ASCIi (text) format.

Except for the separation of the program output screen
(Print Screen) from the Command Screen, the above process is
identical to IBM PC BASIC.

NOTE -- Loading and running programs from other systems:
Chapter 6 explains the process of loading and editing programs
you may already have on disk. Assuming that the program you
wish to run conforms to the language definition in Chapter 3 of
this manual and is in ASCIl format on disk, Chapter 6 will
explain how to proceed. However, we recommend reading
about the Professional BASIC™ editor (Chapter 5) before you
begin to use your own programs.

4-1 PROGRAMS WITHOUT LINE NUMBERS

Professional BASIC™ allows you to load programs which have
no line numbers or have only a few line numbers created by an
external text editor or saved from Professional BASIC™ using
the SAVEU command. The key to making this work, however, is
to remember that:

Each line of code in the program must start with
either a line number or at least one space.

Professional BASIC™ will assign line numbers for lines that
start with a space. The default increment value that will be
used between lines is *10". If a line is loaded that already has
a line number, followed by unnumbered lines (each beginning
with a space), then that line number will be maintained and
each subsequent line will be assigned line numbers above it.

pJrype noiine,vas
‘This is the 1lst line
'This is the 2nd line
‘This is the 3rd line
‘This is the 4th line
‘This is the 5th line
'This is the 6th line
'This is the 7th line
‘This is the 8th line
‘This is the 9th line
‘This is the 10th line

B>

FIGURE 4-3 The supplied demonstration program
NOLINE.BAS as it appears on your disk

i 12 2
10 *This is the 1lst line
‘This is the 2nd

line
30 'This is the 3rd line
40 °‘This is the 4th line
50 'This is the Sth line
‘This is the 6th line
70 ‘This is the 7th line
80 °'This is the 8th line
90 'This is the 9th line
100 'This is the 10th line

VVVVVVVVVVY
o
o

FIGURE 4-4 The supplied demonstration program
NOLINE.BAS after it is loaded by Profes-
sional BASIC™

B>type nolinel.bas
‘This is the 1lst line

‘This is the 2nd line
‘this is the 3rd line
‘This is the 4th line
1000 'This is the 5th line
*This is the 6th line
*This is the 7th line
‘This is the 8th line
‘*This is the 9th line
‘This is the 10th line

B>

FIGURE 4-5 The supplied demonstration program
NOLINE1.BAS as it appears on your disk

i - 12 2
‘This is the lst line

‘This is the 2nd line
'This is the 3rd line
'This is the 4th line
‘This is the 5th line
'This is the 6th line
'This is the 7th line
'This is the 8th line
‘This is the 9th line
'This is the 10th line

v

-

(=3
-

VVVVVVVVVYV

FIGURE 4-6 NOLINE1.BAS after it is loaded by Profes-
sional BASIC™

LOADING, RUNNING, & SAVING PROGRAMS 4-5

Each of the subsequent lines is incremented by 10. A few
examples should help illustrate how this works.

Load the program NOLINE.BAS which is on the Professional
BASIC™ system disk.

>load noline

Figure 4-3 shows what the program looks like if you were
to use the DOS type command (In DOS at the A> prompt enter:
type noline.bas) Figure 4-4 shows the program after it is
loaded in Professional BASIC™

Figure 4-5 shows the same program but with one line having
a line number, Figure 4-6 shows the program loaded. This is
the program NOLINE1.BAS on your disk.

Figure 4~-7 shows the program NOLINE2.BAS which has two
lines with line numbers. Figure 4-8 is the same program after
loading it into Professional BASIC™.

If you wish to load a program from disk using a line number
increment other than the default of ten, you must do so using
the MERGE command. To illustrate this, enter:

>new

to clear Professional BASIC™ of any programs that are already
in the system, followed by the command:

>incr 100

to set the line number increment to 100. At the Professional
BASIC™ prompt enter:

FeTre
'This
‘This
'This

'This
‘This
2000

B>

is the
is the
is the

1000 ‘This is

is the
is the

FIGURE 4-7

13 saus
2nd line

3rd line

4th line

the 5th line
6th line

7th line
‘This is the 8th line
'This is the 9th line
‘This is the 10th line

The supplied demonstration program
NOLINE2.BAS as it appears on your disk

VVVVVVVVVVYV
B -

(=]

-

-

‘This is the 1lst line
*This is the 2nd line
*This is the 3rd line
‘This is the 4th line
‘This is the Sth line
‘This is the 6th line
‘This is the 7th line
'This is the 8th line
‘This is the 9th line
*This is the 10th line

FIGURE 4-8

NOLINE2.BAS after it is loaded by Profes-
sional BASIC™

>incr
>merg
10
20
30

v v

FIGURE

100

e noline

0 'This
0 'This
0 'This

>

> 400 'This
> 500 'This
> 600 'This
> 700 ‘This
> 800 'This
> 900 'This
> 1000 'This

4-9

is the
is the
is the
is the
is the
is the
is the
is the
is the
is the

i 14 2 \

1st line
2nd line
3rd line
4th line
5th line
6th line
7th line
8th line
9th line
10th line

NOLINE.BAS after it is loaded into Profes-
sional BASIC™ via the MERGE command
with an increment of 100

B>type
‘This
'This
'This
'This
'This
'This
'This
'This
'This
‘This
'This
'This
'This
‘This
'This

'This
'This
‘This
'This

100 'This

badnum.

is the
is the
is the
is the
is <he
is the
is the
is the
is the
is the
is the
is the
is the
is the
is the

is the
is the
is the
is the

bas

lst line

2nd line

3rd line

4th line

5th line

6th line

7th line

8th line

9th line

10th line **#*This line will be overwritten¥**=
llth line ***#This line will be overwritten%**=
12th line #**#This line will be overwritten**#*»
13th line ****This line will be overwritten***=
l4th line *#***This line will be overwritten*#**=
15th line

is the 16th line

17th line

18th line

19th line

20th line

LOADING, RUNNING, & SAVING PROGRAMS 4-6

>merge noline
Figure 4-9 is an example of the result.

Because Professional BASIC™ can use line labels instead of
line numbers in GOTO and GOSUB statements this system can
work without the problem of a GOTO or GOSUB having to
address a particular line which may get a different line number
during subsequent loads, where program lines were deleted or
inserted ahead of the target line. Of course, you can leave
some line numbers in, if you really want to keep the number
option for such lines.

For more on this option of having code without line numbers
see the discussion on the MERGE command in Section 5-14 of
the next chapter. You can create sections of code without line
numbers which can be easily merged into any place in a
program, This facility allows you to have libraries of routines
which can be used in a flexible way in constructing programs.

Note that you can produce "logical errors® in a program
file which has a few line numbers. A designated line number
can conflict with a line number that is generated at load time.
For instance, if you have a program such as the one in Figure
4-10. The line with the line number 100 will replace the tenth
line in the program. The lines after that will also replace the
11th through 14th lines. Figure 4-11 is a listing of the program
after loading. Notice that some of the lines from the source
file are missing because they were overwritten.

18 2
>list

10 'This is the lst line
20 'This is the 2nd line
30 'This is the 3rd line
40 'This is the 4th line
50 'This is the 5th line
60 'This is the 6th line
70 'This is the 7th line
80 'This is the 8th line
90 ‘'This is the 9th line
100 'This is the 16th line
110 'This is the 17th line
120 'This is the 18th line
130 'This is the 19th line
140 'This is the 20th line

'This is the 15th line

FIGURE 4-11 The program BADNUM.BAS after it is

loaded into Professional BASIC™ and listed

with the LIST command

o.

CREATING & EDITING
PROGRAMS

This chapter explains the Dynamic Syntax Checker™ and
the Professional BASIC™ editor -- how to enter commands and
lines of code. You will also learn about entering long variable
names and several other powerful and useful features of Profes-
sional BASIC.

5-1 THE DYNAMIC SYNTAX CHECKER™

One of the unique features of Professional BASIC™ is its
system of syntax checking. All input to the command screen (at
a > prompt) from the keyboard is monitored and checked,
keystroke by keystroke. An error in syntax is rejected by the
system with a beep and the cursor remains in place. If a
second error is made at the same point, the system makes an
internal evaluation of every possible keystroke and presents a
list of acceptable keystrokes to the user on a "TRY" line.

To illustrate, go to the command screen in Professional
BASIC™ (press <Break> if you are not already there). We will
perform an arithmetic operation in the "immediate mode"
(command directly entered and executed on the command
screen):

| . o)

3242
The result is 4
TRY (0123456789DEdeld */\+-=<> .}

2.5

Screen showing "Try" line after syntax errot

FIGURE 5-1
made twice at the same place

(- , L)

>2+2
The result is 4
i

FIGURE 5-2 Same screen as Figure 5-1 after <Esc> is press:

CREATING & EDITING PROGRAMS 5-2

° Enter: 2+2 and press the Enter key. The answer
is shown as: The result is 4. Now let's try it
again, but make a mistake on purpose.

° Enter: 2.. The second decimal point is
rejected. Press the period again. Since you have
made two errors at that point, the system presents
a list of acceptable keystrokes. The display will
look similar to Figure 5-1.

When you type one of the acceptable characters, the "TRY" line
will disappear. If you want to get out of the operation, the
<Esc> will clear both lines.

The syntax checking system is quite powerful. For
instance, it will prevent you from entering too many right par-
entheses for the matching number of left ones. *Immediate
mode* commands as well as program instructions are all checked
by the system. If you violate a rule of syntax for one of the
BASIC commands, functions, or statements, the system will
announce with a beep that an error has been made and wait for
a correct keystroke before continuing. You are literally
prevented from entering a line of code with a syntax error
lurking in it.

While a program is running, user input requested by an
INPUT statement will also be checked by the system. If you
try to enter alphabetical characters where a number is
expected, the system will reject the characters. If you try to
enter too many or too few data elements required by an INPUT
statement, the system will also respond and indicate your error.

CREATING & EDITING PROGRAMS 5-3

5-2 CREATING, RUNNING, AND EDITING PROGRAMS
- SOME BACKGROUND

Creating and editing programs in Professional BASIC™ is
easy, with many facilities available to aid you in both the
creation of new programs and the editing of existing ones.
Most of the procedures followed in IBM PC BASIC are also
followed in Professional BASIC™. In addition to the Dynamic
Syntax Checker™, there are some other important differences
you need to learn. The new features to become familiar with
are:

° Line numbers can be automatically generated by
pressing the <space bar>,

° Line length can be up to 311 characters.

° Auto label generator -- for long variable names
and line labels there is a feature which allows you
to press a key (the "@" character) to generate the
name or label after typing just a few characters
(enough to uniquely identify it).

° Line numbers (required) range from 1 to 99999 (0
is not allowed).

° FIND command - locates and displays every use
of a specified variable, label, or line number.

) SEARCH command - locates and displays the use
of any designated text in the program. For
instance, locate every "PRINT" or "FOR" in the
program,

CREATING & EDITING PROGRAMS 5-4

SORTV & SORTL commands -~ These two
commands produce a sorted list of all the variables
(either simple variable or array) and a list of all
line labels in a program. With the SORTV and
FIND commands the location and use of any
variable can be identified. With the SORTL and
FIND commands the location and use of any line
label can be identified.

Before the program is executed (after a "run® or
*srun® is entered) the entire program is analyzed
for errors. You do not have to wait until each
portion of the program is executed to find out, for
example, that you have a GOTO 150 statement
but no line 150 in the program,

These facilities, together with the screen windows
described in Section 11, will help you create and debug programs
quickly and easily.

In addition to the above extensions, there are a few differ-
ences to note with Professional BASIC™. These include:

Line oriented editor -- Because of the extensive
Dynamic Syntax Checking capability the editor
works differently than in IBM PC BASIC. The up
and down cursor keys will not move the cursor
around the screen for editing purposes. Another
facility is used to accomplish much the same thing
(<F9> and <F10> keys). The Up and Down cursor
keys will move the cursor only within a line of
program code (a program line can be up to 4
screen lines long).

FIGURE 5-3a Command Screen after line number is typed b
before <Space bar> is pressed

FIGURE 5-3b Command Screen after <space bar> is pressed

CREATING & EDITING PROGRAMS 5-5

® When using the SAVE and LOAD commands it is not
necessary to enclose the filename with quotes,
The filename is also optional, with the filename
used in the previous LOAD or SAVE, if any, as the
default., (The default filename is shown on the
<Y> screen.) Thus you can assure using the same
filename in the SAVE command as was used in the
previous LOAD command, Using the NEW
command nullifies this option until another SAVE
or LOAD with a specified filename is executed.

® You may type code in upper and lower case. The
system does not change lower case letters into
upper case letters. Upper and lower case are not
considered unique (i.e., NaMe and nAmE are the
same)

With these features in mind let's create a program using
them.

5-3 ENTERING AND EDITING PROGRAM LINES

Load in Professional BASIC™ and press a key to clear the
initial screen. If it is already loaded in the machine, type new
on the Command Screen and press the <Enter> key. The cursor
(the rectangular blinking box) will be sitting to the right of the
> symbol, which is the prompt for entering a command in Pro-
fessional BASIC™. In IBM PC BASIC this condition is indicated
by an "OK" on a line followed by a blinking underline cursor on
the next line, under the "O" in "OK".

To begin typing in a line of BASIC code, you must first type
the line number. Type in a 10 followed by a space. The system

FIGURE 5-4a Command Screen before <space bar> is pressec

i 2 8
FIGURE 5-4b Command Screen after <space bar> is pressed
i 6 2
FIGURE 5-5 Command Screen after a few program lines ha

been entered

CREATING & EDITING PROGRAMS 5-6

recognizes this number "10" as a line number when the space
key is pressed. If you meant to enter in a number 10 which was
the first part of a calculation in "immediate mode" (see Section
5-10), you should not put a space between the 10 and the
operator (+, -, *, /) or other part of an expression. If you
press the backspace key, the display will change to the previous
state, before the space was typed.

An alternate way to get a line number is with the default
system that generates line numbers.

1. Press the <Esc> key to clear (or abort) the
current line,

2. Then press the <space bar> once. The next
logical line number (10) is generated for you and
you are positioned to enter in a line of code.
(BASIC requires a space following the line number
so the cursor is positioned to the second space or
column following the line number.) Before
proceeding to enter a program try the following to
get used to the number generator.

3. Type in rem and press the <Enter> key.

4. Then press the <space bar> to generate the next
line number, 20.

5. Repeat steps 3 and 4 a few times to see how it
works. Your screen should look something like
Figure 5-5.

You have the option of resetting the increment value of 10 to
some other number. To automatically generate line numbers in

,)

FIGURE 5-6 Editing line 20 with cursor at the front of the |

—
i -~ 6 20
> 10 rem
> 20 rem
> 30 rem
> 40 rem
> 20 rem this is 20
FIGURE 5-7 Line 20 after text has been typed
1 6 22
20 rem this is 20
FIGURE 5-8 Line 20 with cursor over the "2°; <left cur

key pressed twice

20 rem this is line 20

FIGURE 5-9 Line 20 after tvping in "line*

CREATING & EDITING PROGRAMS 5-7

increments of 5, for instance, enter the following command:
incr 5

Now press the <space bar> once and the next logical line
number (45) is generated.

NOTE: The Dynamic Syntax Checker™ is monitoring all your
keystroke entries. If you make a mistake during this exercise
the system will reject the incorrect keystroke with a beep.
After two consecutive errors, the set of keystrokes which are
valid at that point will be presented to you. Only by typing one
of those presented or by pressing <Esc> to abort the line can
you continue (Refer back to 5-1 for more).

Now let's edit a line. Enter the following:
edit 20

Line 20 is displayed and the cursor is positioned at the start of
the line.

1. Press <End> to move the cursor to the end of the
line,

2. Press the <space bar> once and type in: this
is 20.

3. Press the left cursor key (on the numeric keypad)

until the cursor box is over the 2 after the word
is. We want to insert the word line here plus a
space.

i 6 25
rem
rem this is §ine 20
FIGURE 5-10 Line 20 before deleting the word “line”
i 6 20
>
>
>
> 40 rem)
> 20 rem this is 30
FIGURE 5-11 Line 20 after deleting the word “line*
i 6 8
> 10 rem
> 20 rem
> 30 rem
> 40 rem
> 20 gem this is 20
FIGURE 5-12 Line 20 after <Home> was pressed

> 10 rem ! 6 22
> 20 rem
> 30 rem
> 40 rem
> 20 rem this is 20

FIGURE 5-13 Line 20 after <End> was pressed

CREATING & EDITING PROGRAMS 5-8

4, Press <Ins>. This will put the editor in insert
mode, indicated by a faster blinking of the cursor.
Type in the word line and a space. The statement
should now read: 20 rem this is line 20. Any
cursor control key or <ins> will exit the insert
mode.

5. To delete the word "line", press the left cursor
key until the cursor box is over the first letter
*1". Then press 5 times, until the appropri-
ate characters are deleted,

Practice the use of the left and right cursor keys and the
<Ins> and keys until you feel comfortable with how the
editing operations work.

Use the <Home> and <End> keys to move the cursor to the
beginning (first character after the line number) or end of the
line being edited, respectively.

To delete from the cursor to the end of the current line,
press and hold <Ctr> while striking <End>.

To delete from the left of the cursor to the beginning of
the line (excluding the line number itself), hold down the <Ctrl>
key while you strike the <Home> key.

When the line on the screen is edited the way you want it,
press <Enter> and it will be changed in memory. If you do not
wish to save the change, then press <Esc>.

To delete a line or set of lines use the DELETE command (see
Section 5-9).

CREATING & EDITING PROGRAMS 5-9

The <F6> key may be used to generate the "edit " string
on the command line so that you only have to press that key
followed by a line number and the <Enter> key. This is just the
same as typing "edit " on the keyboard.

The <F8> key will redisplay the last line edited so you may
edit it further.

If you press <F10>, the next line after the one previously
edited will be displayed for editing. Using this key it is possible
to scroll slowly through the program, pausing to edit lines as you
go. The <F9> key will move back one line with each press (in
case you go past the line you intended to edit).

Using the <F6>, <F9>, and <F10> keys it is possible to move
about in a program and perform editing functions. Each time an
edit n command is used, the reference point for the <F9> and
<F10> keys will be moved (previous and next will be relative to
the line n).

The up and down cursor keys will work only within a
multiple line BASIC code line. One line of code in Professional
BASIC™ may be 311 characters long, or 4 screen lines. The
technique to move to the next or previous line of BASIC code is
with the use of the <F9> and <F10> keys.

A summary of function key action is presented in Section
5-13.

Important note for future reference: If you edit a line in a
program which had been running and is now suspended (<Break>
was pressed to halt execution), the program cannot resume
execution unless you first enter the "run® command again. If
you have not edited or changed your program in any way the
program should execute immediately.

CREATING & EDITING PROGRAMS 5-10

5-4 LIST Command

To look at a program in memory while on the Command

Screen:

1.

4.

5.

Type: list and press <Enter>. (Or, press <F1>).
The program listing will scroll quickly on the
screen.

Pressing <space bar> during the scroll will halt
the listing and allow viewing a section of code.

Each additional press of the <space bar> scrolls
one more line onto the screen.

Press <Enter> to go back to full speed listing and
scrolling.

If you have seen what you want and wish to
return to the Command Screen before the listing
finishes, press <Esc>. The listing operation will be
aborted at that point.

To list specific lines of code on the screen, you can enter
the line numbers after the list command. To look at lines 100 to
200, for instance, enter the following:

list 100-200

If there is no line 100 or 200, the system will start from the
next available line in the program after 100 and list up to the
last available line before 200.

CREATING & EDITING PROGRAMS 5-11

If you want to list from line 100 to the end of the program,
enter:

list 100-
To list all lines up to line 200 the command is:
list -200
You may specify just a single line to list. You may also
specify a line label instead of its line number. For instance, to
list the line that is named Start.of.Routine.A, the command
would be:
list start.of.routine.a
(Notice that upper/lower case is not important)
You may also use labels to specify a range, as in:
list start.of.routine.a - start.of.routine.b
To send a listing to the printer instead of the screen, the
command is llist instead of list. You may specify the lines to
be printed with the llist command the same way you do with

list.

Iﬁ Section 11, Chapter 8, you will learn about another way
to print a listing of your programs (<}> key option).

2 dim %(1 to 4,1 to 4),y(l to 4,1 to 4)
16 read ¥%(nl,n2)
22 if n2=4 th,
36 f=x(n2,nl)
38 if n3=nl then x(»
39 if n3>nl then ¥(n2,n3)=%(n2,n3)-£*x(nl,n3)
49 t=¥(nl,nl) '
50 %¥(nl,nl)=1.

j

i 11 2

print tab(6l);%(nl,n2) else print tab(20*n2-19)
nl,nl)
n2,n3)=0.0

LE 5-14

Screen showing use of the FIND command to
locate the “x* variable in the DEMM.BAS program

CREATING & EDITING PROGRAMS 5-12

5-5 LOCATING VARIABLES, LABELS & LINE NUMBERS
IN A PROGRAM -- THE "FIND®" COMMAND

There is an easy-to-use facility in Professional BASIC™ that
allows you to locate every reference to a variable, label, or line
number. On the command screen, load the sample program
which inverts a matrix by entering: load demm. After the
program is loaded simply enter, for example:

>find x

The system will scroll onto the screen every line in the
program containing the variable, label, or line number *x". The
actual reference is highlighted for you in inverse video.

Rules to follow in using this command are:

1. If there are more than 24 lines to be displayed on
the screen, then you can press <space bar> to
halt the scrolling action.

2. Subsequent presses of <space bar> will scroll the
next line(s), one line with each press.

3. Pressing <Enter> will continue the full speed
scrolling action.

4. If you press <Esc>, the listing will be aborted at
that point and control will return to the command
screen,

To locate each place in a program a variable is assigned a
value. The command is, for example:

>find x=

>find x= .
16 read x(nl,n2)
38 if n3=nl then X(n2,n3)=0.0
39 if n3>nl then %(n2,n3)=x(n2,n3)-£f*x(nl,n3)
50 %(nl,nl)=1.

'‘E 5-15 Screen showing use of the FIND= command to
locate where variable "x°* is being assigned a new
value

i 9 2
search pri

3 RIX INVERSTION"

9 | . "Run number is ";n,date$,time$

19 } matrix is")

22 tab(6l);x(nl,n2) else pti tab(20*n2-19);x(nl,n2);
54 nd the inverse is"

57 if n2=4 then tab(61);y(nl,n2) else p§

tab(20*n2-19);y(nl,n2);

\E 5-16 Screen showing use of the SEARCH PRINT com-
mand in the DEMM.BAS program

CREATING & EDITING PROGRAMS 5-13

This variation will cause only those lines in which x is assigned a
value to be listed on the screen. (Remember, if you were using
a long variable name or label, the special facility for completing
the typing in of the string described in Section 5-8 is available
for your use).

Another form of this command is to do the same search but
display all program lines, not just the ones where there is a
*hit". The format of this command is:

>findl x or findl x=

It is similar to the LIST command but with the target variables
shown in inverse video.

5-6 LOCATING ANY TEXT STRING IN THE PROGRAM
-- THE "SEARCH® COMMAND

The FIND command is limited to variables, labels, and line
number references. The SEARCH command is used to locate any
sequence of characters in the program. The SEARCH command
format is:

>search character-sequence

The boundaries of the sequence are defined by starting at the
second character after the "h" in "search" and stopping at the
last character entered before pressing <Enter>. Note that
blanks are valid search characters. In fact, you could search
for a group of blanks. This command may be particularly useful
in searching for every occurrence of the use of particular in-
structions in a program. For example, if you wanted to locate
every instance of a PRINT statement in a program, enter:

10 rem
20 rem
30 rem
40 fen

70 PRINT
80 PRINT
90 PRINT
100 PRINT
110 PRINT

120 PRINT: PRINT: PRINT "Press any key to continue,..”

130 print
140 PRINT

150 PRINT: PRINT "This is the last message.™

160 END
'search ~
130 print

»
»
»
»
»
» 60 LOCATE 1,8
>
»
»
»
,
,

i 20 2
This program is a simple example to allow the new user
to immediately load and run a program. It prints on the
screen and asks for input. After the input, a final
message is printed to the screen.

WL EXAMPLE PROGRAM senaan

"This program is a simple example to allow the new user”
"to immediately load and run a program. It prints on the”
"screen and asks for input. After the input, a final"
"message {s printed to the screen."

"check program®:end:rem 130 A$ = INKEYS: IF AS = "" THEN GOTO™ -

"check program®:end:rem 130 A8 = INKEYS: IF AS = " pupn GoTo~

~

RE 5-17 Screen showing use of the SEARCH ~ command in
the ERROR.BAS program to find lines with syntax
errors

i 14 2

>sortv

;ates

E

Screen showing use of SORTV command in the
DEMM.BAS program

ortl
ertyuiop
art

RE 5-19

Screen showing use of SORTL command in the
DEMM.BAS program

CREATING & EDITING PROGRAMS 5-14

>search print

Another important use of the SEARCH command is to find
error lines when a program is read in from a file not created by
Professional BASIC™ (see Chapter 6). Load the example
program ERROR.BAS. Enter the search command:

>search =~

Use the "tilde" character because it occurs in all lines with
errors. Although the example program has only one error and is
very short, you can see that in a large program with several
errors it is very convenient to be certain that no error lines are
skipped during editing.

The SEARCHL command is similar to SEARCH except that it
produces a listing like one produced by a LIST command but
with the target characters shown in inverse video.

5-7 SORTV and SORTL COMMANDS

By entering SORTV on the command screen, an alphabetical
listing of all the variables (including arrays) in the program will
be scrolled onto the screen. Then, to locate the specific occur-
rences of any variable in the program, use the FIND or FINDL
command.

The SORTL command is used to help identify all the line
labels used in a program. By entering the command on the
command screen, a list of all the line labels will be scrolled onto
the screen. Then use the FIND or FINDL command to locate
the line with the label and the other lines in which there is a
GOTO or GOSUB and the same label.

CREATING & EDITING PROGRAMS 5-15

5-8 ENTRY OF LONG VARIABLE NAMES AND LABELS

With the ability to create long variable names and line
labels, programs can be created which are more easily under-
stood than if short, cryptic names are used. The disadvantages
of using long names are that they are frustrating to type again
and again and that spelling and/or typographical errors are
easily made.

There is an elegant solution to this dilemma in Professional
BASIC™. All you need to do is:

1. Type in enough of the variable or label to uniquely
identify it.
2. Then enter an "@" character. The rest of the

name or label will be retrieved from memory and
displayed on the screen.

For example, if you have a variable name such as,
first.parameter,

and you type in fir, or enough to uniquely idéntify that variable
name, then press @, (hold the shift key and press the "2" key at
the top of the keyboard) and then the rest of the variable name
will appear. It is as if you had completed the typing of the
name yourself from the keyboard. If there are two or more
variables starting with “fir* (e.g., another variable is
firm.costs) then the "@" will be rejected with a beep and you
must type in more of the name or label. firs or firm in this
latter case would distinguish each label from the other.

This system of automatically completing long strings used as
variable names or as labels, is a tremendous help in coding in

CREATING & EDITING PROGRAMS 5-16

Professional BASIC™. There are some disadvantages to using
long names, such as using more program space in memory and on
disk, and even some potential difficulty in reading programs.
Also, the split screen displays (that you will learn about in
Section 11) truncate long instructions. Therefore, the ability to
recognize an instruction which begins with a long variable name
or label may be difficult. It should be realized that there is a
practical limit to how long your variable and label names should
be in order for them not to become a distraction. With some
practice, you can develop an optimal strategy to fit your style
and needs.

5-9 DELETE Command

To delete a line or set of lines in a program in memory use
the DELETE command. To use the command simply type in:
delete or del followed by the line or set of lines. Unlike the
list command, you must specify the exact lines you wish to
delete. You cannot leave out the beginning or ending line
number,

To delete line 100 in a program enter:
>delete 100 or >del 100
To delete lines 50-135 in a program enter:
>delete 50-135 or >del 50-135
Lines 50 and 135 must be valid lines which are in the program
currently in memory at the time the command is given. After
deleting the lines you may wish to renumber your program line

numbers. Refer to your IBM BASIC reference manual to see
how the RENUM command operates.

i 4 2
25% (2+43)
he result is 125
RE 5-20 Command Screen showing arithmetic in Immediate

Mode

inetrace 12

S5*(243)/20-15*(2+2)
5% (5) /20-15%(2+2)
5%*5/20-15*(4)
25/20-15*%4

.25-15*%4

+25-60

53.75

e result is -53.75

\E 5-21 Command Screen showing arithmetic calculations
in Finetrace Mode

CREATING & EDITING PROGRAMS 5-17

5-10 ONSCREEN ARITHMETIC

With the Command Screen active (cursor blinking after the
> prompt showing) there are a number of actions which may be
taken. Most actions that can be taken in this condition have to
do with loading, entering, editing, and running programs.
However, in addition to these actions it is also possible to
perform arithmetic operations.

For instance, to add two numbers together simply type in
the expression and press <Enter>, Figure 5-20 is an example of
how the screen will look. Notice that if you make a mistake
while entering the expression, the system will beep and reject
the entry (character will appear but cursor does not move). If
you make a mistake twice at the same point, the system will
present you with a list of acceptable keys that can be pressed
at this point. Only an acceptable character will allow you to
continue, Of course, pressing <Esc> will erase the line and
allow you to restart.

5-11 THE FINETRACE MODE

In this mode it is possible to see in minute detail exactly
how the computer evaluates an expression. At the > prompt,
type: finetrace and press <Enter>. Now try this example:

25%(2+3)/20-15%(2+2)

Press <Enter> when you are through typing this in. Next use
the <left arrow> key to advance to the next operation being
performed in the calculation of this expression. It will become
quite clear just how the computer resolves this expression to a
single number,

CREATING & EDITING PROGRAMS 5-18

A more complex example to try would be to use variables
instead of numbers. First, use a series of statements to assign
values to each variable. Then, type in the expression using the
variable names and step through the finetrace. In addition to
seeing the order of calculation as before, you will see the order
of substituting numbers for the variables too.

To get out of the "finetrace" mode enter: nofinetrace

5-12 PRINTING DATE AND TIME

Professional BASIC™ has a convenience feature to print the
current system time and date on the connected printer. This is
helpful if you want to put the time and date at the head of a
program listing or other printout.

Press <Shift Alt PrtSc> at any time to print the time and
date. It will look like the following:

1984 May 17 15:54:41

5-13 FUNCTION KEYS

The function keys for the editor have fixed values. That is,
you cannot change them. The editor function key values are
described below:

F1 Types "list " on the screen
F2 Performs the RUN command
F3 Types "load " on the screen and waits for a

filename or <Enter>

CREATING & EDITING PROGRAMS 5-19

F4

F5

F6

F7

F8

F9

F10

IMPORTANT:

Types “save and waits for a filename or

<Enter>

Redisplays the last command entered on the
Command screen.

Types "edit " and waits for you to enter a line
number or label.

Types ‘"system®" and waits for you to press
<Enter>. This will exit from Professional BASIC™
and return you to the DOS operating system,

Performs the Edit command, displaying the most
recently edited line.

Performs the Edit command, displaying for edit
the line just prior to the last line edited or
displayed for edit (next lower line number). By
pressing <F9> repeatedly you can scroll backwards
through the program to get to a line you wish to
edit.

Performs the Edit command, displaying for edit
the next line after the last line edited or displayed
for edit (next higher line number). By pressing
<F10> repeatedly you can scroll forwards through
the program to get to a line you wish to edit.

If you have the Key-Lock ‘“on®
(turned on by pressing the "5" key on
the numeric keypad) make sure the
Ctrl, Shift, and Alt keys are "off"
before trying to use the function
keys.

)

10 ‘rthis is
20 'This is
30 'This is
40 ‘'This is
50 ‘This is
'This is
70 °'This is
80 'This is
90 'This is
100 ‘This is
merge noline
110 'This is
120 °This is
130 ‘'This is
140 °This is
150 'This is
‘this is
‘This is
‘This is
*This is
‘This is

VVVVVVVVVVYV
o0
o

YVVVVVVVVVV
-
o
o

the
the
the
the
the
the
the
the
the
the

the
the
the
the
the
the
the
the
the
the

1st line
2nd line
3rd line
4th line
Sth line
6th line
7th line
8th line
9th line
10th line

1st line
2nd line
3rd line
4th line
Sth line
6th line
7th line
gth line
9th line
10th line

SURE 5-22

Screen showing NOLINE.BAS loaded with
the LOAD command and then loaded again
with the MERGE command

CREATING & EDITING PROGRAMS 5-20

5-14 MERGE COMMAND

An unusual and powerful feature of Professional BASIC is
the capability of creating programs with only a few or no line
numbers. The rule that must be followed with code you wish to
merge into a program is:

Each line of code in the file being merged into
your program must start with a line number or at
least one space.

In most cases you will probably want to merge program
lines where none of the lines have a line number. That is, every
line would start with at least one space.

Professional BASIC™ will assign a line number to each line
being merged in. The line number assigned to the first line of
code in the merge file will be one increment higher than the line
which would be displayed if you were to press the <F8> function
key. There is a "pointer® in the system which is associated
with the Professional BASIC™ editor. It is used to scroll
through a program to edit lines of code. The "edit current”,
*edit previous", and "edit next" functions keys (<F8>, <F9>, and
<F10> respectively) use this pointer. The MERGE command also
uses this pointer to decide where unnumbered lines of code
should be placed.

Load the program NOLINE.BAS. Then enter:
>merge noline

The code is merged at the end of the file (see Figure 5-22).
Now enter the edit command:

>edit 50

vvvvvvvvvvvgvvvvvvvvvvv

H
"
aQ
L]
-}
o
-
-
3
®

| S—

the
the
the
the
the
the
the
the
the

the

the
the
the
the
the
the
the
the
the
the

2nd
3rd
4th
Sth
6th
7th
8th
9th

line
line
line
line
line
line
line
line

10th line

5th

1st
2nd
3rd
4th
Sth
6th
7th
8th
9th

line

line
line
line
line
line
line
line
line
line

10th line

_

'WURE 5-23a

NOLINE.BAS
command after line 50 with the increment
set to 1

inserted with the MERGE

10 ‘'This is
20 'This is
30 'This is
40 'This is
50 'This is
51 'This is
$2 'This is
53 'This is
54 ‘'This is
55 'This is
56 ‘This is
57 'This is
58 'This is
59 'This is
60 ‘This is
70 'This is
80 'This is
90 'This is
100 'This is

the
the
the

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

1st
2nd
3rd
4th
Sth
1st
2nd
3rd
4th
Sth
6th
7th
8th
9th

line
line
line
line
line
line
line
line
line
line
line
line
line
line

10th line

7th
8th
9th

line
line
line

10th line

—

‘{URE 5-23b

Listing of the resulting program (after a

o~ o

CREATING & EDITING PROGRAMS 5-21

Press <return)> without editing this line. Now enter:
>merge noline

Notice that the file overwrites part of the existing program
beginning at line 60.

Enter the NEW command to start over. Enter merge
noline to load in the program (works just like the LOAD
command in this case, where there are currently no program
lines in memory). Now enter the auto line number generation
command to alter the auto increment as follows:

>incr 1
Then enter the following two commands

>edit 50
>merge noline

Figure 5-23 shows the result. The lines are merged in with
a starting line number of 51 and each subsequent line number is
incremented by one. (Note that line 60 has been replaced.)

Thus, with this facility you can see how it is possible to set
up libraries of modules which can be merged together into a
program. Since Professional BASIC™ has the option to use line
labels you do not have to worry about the values of the line
numbers generated. |f each module merged in is a subroutine,
the first line can have a label. Then the program can access
that routine through a GOSUB no matter where it may physi-
cally be placed in the program. If there need to be GOTO's or
GOSUB's internally in that module, then those routines can use
labels too. A warning: When merging code be careful that
there is room in the target program for the lines of code to fit
in. The code being merged in may overwrite and replace lines
in the target program, as demonstrated in the example above.

i o8 2
> 10 def int a-z
> 20 def seg = &h4000
>

30 for i = 0 to 255
> 40 poke i,i
> 50 next
> 60 end
>

IGURE 5-24 Command screen with POKEHEX.BAS
loaded.

B>type pokehexu.bas ‘
def int a-z

def seg = &h4000
for i = 0 to 255
poke i,i
next
end
B>
IGURE 5-25 POKEHEXU.BAS as it is stored to the disk

with the SAVEU command

CREATING & EDITING PROGRAMS 5-22

5-15 SAVING PROGRAMS WITHOUT LINE NUMBERS

Professional BASIC™ allows you the option of saving your
program without line numbers. The SAVEU command operates
in exactly the same fashion as the SAVE command except that it
strips off all leading line numbers and replaces them with a
single blank. The single leading blank allows Professional
BASIC™ to assign line numbers to the code the next time you
load or merge it into the system.

This feature can be very useful when creating libraries of
commonly used subroutines and small programs. As an example
load the program POKEHEX from your disk. Your screen should
look like Figure 5-24. Now enter:

>saveu pokehexu

to save the program without line numbers with a filename of
pokehexu. Now press <F7> and <ENTER> to return to DOS. To
look at the file use the DOS type command as follows:

A>type pokehexu.bas

The screen should look like Figure 5-25. This is an ASCII text
file that can be edited with an outside text editor, Note that
each line has a leading blank to allow Professional BASIC™ to
assign line numbers the next time you load the program.
Remember that if you edit the program with a text editor each
line of code must be preceeded with at least one space or a line
number.

Now that you have had a grounding in the functioning of
the Professional BASIC™ environment and editor, the next
section will explain how to use your IBM PC BASIC programs
you may already have with the Professional BASIC™ system.

6.

CONVERTING IBM PC
BASIC PROGRAMS

In most respects the commands and statements supported
by the Professional BASIC™ system are identical to those
supported by IBM PC BASIC. In some cases you may simply be
able to read your ASCII source file into Professional BASIC™
using the LOAD command and it will run perfectly. More often
than not, however, there will be minor editing changes that
need to be made before Professional BASIC™ will run your IBM
PC BASIC programs. You should have both your IBM PC BASIC
manual and your Professional BASIC™ manual at hand for syn-
tactical reference when running programs developed for one
system and running on the other. Please refer to Chapter 2 for
general system differences, and Chapter 3 for specific differ-
ences in the way commands and statements operate.

See Appendix A - Professional BASIC™ Differences.

6-1 COMMANDS AND STATEMENTS WITH DIFFERENCES

Below you will find a brief list of the commands that differ
between IBM PC BASIC and Professional BASIC™. For more in-
formation please refer to section 3-3,

Commands and Statements that differ are:

DIM All arrays must be dimensioned under
Professional BASIC™.

CONVERTING IBM PC BASIC PROGRAMS 6-2

FOR/NEXT All FOR/NEXT statements must be
physically and logically paired. A
single NEXT without parameters
cannot work for multiple FOR's.

LOCATE The third, fourth and fifth parameters
are accepted but have no effect on
the cursor.

FIELD You may not use subscripted variables
in a FIELD statement.
FILES (in a program) Quotes are required if you are speci-

fying a filespec. Specifying a drive
letter will give you a list of files on
the specified drive. Quotes are not
required in immediate mode.
WHILE/WEND WHILE/WEND statements must be
physically and logically paired.

Professional BASIC™ is being implemented in stages, and
not all the IBM PC BASIC commands are currently available.
For a complete list of commands, both implemented and not yet
available, please refer to Appendix A.

When using the editor, keep in mind that the Professional
BASIC™ editor is not a full screen editor and that there are
many new and powerful commands available to you. Refer to
Chapter 5 for more information. The editing commands that
differ are:

EDIT There is no "EDIT ." option, F8
displays last line edited.
LOAD The quote marks are not needed

before or after the filename, if any.
An extension of .BAS is assumed.
There is no ,R option.

SAVE Responds in a fashion similar to
LOAD. SAVE is not available as a
program statement.

10 rem This program is a simple example to allow the new user
20 rem to immediately load and run a program. It prints on the
30 rem screen and asks for input. After the input, a final
40 rem message is printed to the screen.

,

50
60 LOCATE 1,8
70 PRINT "##a#an EXAMPLE PROGRAM Rraan

80 PRINT "This program is a simple example to allow the new user"
90 PRINT "to immediately load and run a program. It prints on the"
100 PRINT "
110 PRINT "message is printed to the screen."

120 PRINT:

130 print "check program":end:rem 130 A$ = INKEY$: IF AS = "“ THEN GOTO™ ~

140 PRINT

150 PRINT:

160 END
list 130

. 130 print "check program":end:rem 130 A$ = INKEYS$: IF A$ = "" THEN GOTO™ ~

i 20 2

screen and asks for input. After the input, a final"

PRINT: PRINT "Press any key to continue..."

PRINT "This is the last message."

RE 6-1

Screen showing line with error message in the
ERROR.BAS program

CONVERTING I1BM PC BASIC PROGRAMS 6-3

6-2 LOADING PROGRAMS FROM OTHER BASIC SYSTEMS

To load a program created on another system, first make
sure it is in ASCIlI format. If it is not, use the other BASIC
system to resave the program in ASCI| format. For example, to
save the program named test in ASCIl format with IBM BASIC,
use the following command: save "test.bas®,a. The equiva-
lent command in Professional BASIC™ is:

>save test

Because of the differences explained in Chapters 2 and 3 or
if there is a syntax error in the program, Professional BASIC™
will flag "errors' as the program is loaded. The Dynamic
Syntax Checker™ is active during the loading of a program.
When an error is found, a beep will sound and the line in error
will be changed to include an error message. The loading does
not stop. |f there are errors, you will need to edit the program
before running it.

To practice with this, load in the program: ERROR.BAS. It
is the same as the program EXAMPLE.BAS except that there is
an intentional error. The beep indicates that an error has been
encountered; the program will continue to load. The line with
the error in it will be changed to include code that would stop
the program if you were to run it without fixing the error. The
line of code with the error in it has been altered to look like:

130 print "check program":end:rem 130 A$ = INKEY$: IF
A$ = "* THEN GOTO™~

Note that the original code is retained as a comment. The
error is that there is no line number or label after *"GOTO". A
~ (tilde) is included in the line where the error is detected.
Place the cursor over the "A" after the "130" in the middle of

2 44

i
30 print "check program":end:rem 130 %S = INKEYS: IF AS = "" THEN GOTO~ ~

GURE 6-2 Line 130 before <Ctrl Home> is pressed

i 2 8

30 W$ = INKEYS: IF A§ = "™ THEN GOTO™ ~

IGURE 6-3 line 130 after <Ctrl Home> is pressed

CONVERTING I1BM PC BASIC PROGRAMS 6-4

the line. Press <Ctrl Home> to delete the information which
was inserted by the system during loading. Type in "130"
after the "GOTO". Now the program can be run.

For larger programs, an easy way to find all the error lines
is to use the SEARCH command described in Section 5-6. Since
the tilde character is unique and always present in error lines,
the command "SEARCH ~* will list all of the lines that need to
be changed.

6-3 RANDOM ACCESS FILE DATA DIFFERENCES

All real numbers (sometimes called floating point numbers)
in Professional BASIC™ use the IEEE format instead of the
Microsoft format used by 1BM PC BASIC. Real numbers encoded
in binary format use the same amount of space on the disk under
both BASICs. Single precision real numbers use 4 bytes and
double precision real numbers use 8 bytes.

This means that the binary encoding and decoding of single
and double precision numbers using the MKS$ and MKDS$
commands and the corresponding CVS and CVD commands will
be different in Professional BASIC™. (In all cases Professional
BASIC™ gives more accurate results than IBM PC BASIC.)

A possible method for converting files created by 1BM PC
BASIC that have binary encoded numeric data fields is to use
IBM PC BASIC to read the file one record at a time and write
each record out into another random file, storing the numbers in
ASCII (text) format. Then in Professional BASIC, the strictly
ASCI11 random file can be read and then the data written back
out into a third random file which reencodes the data with the
MKS$ and MKD$ commands.

i 22 2
ist
1 'program to convert a random access file with binary encoded
2" numeric data to an all ASCII file

10 open "filel"” as #1 len=52

20 field #1,10 as al$,4 as bl$,8 as c15,30 as 41§

30 open "file2" as #2 len=67

;0 field #2,10 as a2$,9 as b2$,18 as c2$,30 as d2$

0 i=1

60 get #1,i

70 lset a2§=al$

80 lset b2§=str$(cvs(bl$)) 'single precision data stored as binary converted
o ASCII

90 lset c28=str$ (cvd(cl$)) 'double precision data stored as binary converted
o ASCII

100 1lset d2$=4d1§

110 put #2,i

120 i=i+1

130 if i>(lof(1)/52) goto 150

140 goto 60

150 close:end

‘E 6-4 Program to convert a binary encoded numeric
data file to ASCII (Run in IBM PC BASIC)
p—
i 22 2
ist

1 'program to convert an all ASCII having numeric data to one
2 where numeric data is binary encoded
10 open "file2" as #1 len=67
20 field #1,10 as a2$,9 as b2§$,18 as ¢2%$,30 as d2§
30 open "file3" as $2 len=52
40 field #2,10 as a3$,4 as b3$,8 as c¢3%,30 as d3$
50 i=1
60 get #1,i
70 1lset a3$=a2$
80 lset b3$=mKs$(val(b2$)) 'number as ASCII string converted to binary
ingle precision number
90 lset c3$=mKd$ (val(c2$)) ‘number as ASCII string converted to binary
>uble precision number
100 lset 43$=d2$
110 put #2,i
120 i=i+1
130 if i>(lof(1)/67) goto 150
140 goto 60
150 close:end

[. [o - am——- -

CONVERTING IBM PC BASIC PROGRAMS 6-5

The two programs shown in Figures 6-4 and 6-5 do these
conversions. Of the four fields in the file, the second and third
are the ones which are converted. Notice that the single
precision numbers are represented by an ASCII string that is 9
bytes long. The double precision numbers require a string field
18 bytes long. Program #1 should be run under 1BM PC BASIC.
Program #2 is run under Professional BASIC™. Filel and File3
are identical except that the two middle fields of the four have
numeric data encoded in binary using two different encoding
conventions.

Iintegers

Integers in Professional BASIC™ use four bytes (two 16 bit
words) instead of two bytes (one word) as are used in IBM PC
BASIC.

However, you may define integer fields which are binary
encoded as either 2 or 4 bytes. Thus files established under
1IBM PC BASIC in which integer values have been stored in 2
byte fields can be read without conversion by Professional
BASIC™. The CVI operator will correctly convert either a
2-byte or a 4-byte encoded string to an integer. The MKI$ in-
struction will encode an integer into a 4-byte string. However,
if that string is LSET into a 2-byte field, only the 2 left bytes
(which would be all that is required to store a number up to
32,767) would be placed in the file buffer field.

Thus, as long as you used integers of no more than 32,767, it
does not matter whether or not you set aside 2 or 4 bytes in the
FIELD statement for a binary encoded integer. If you use 4
bytes, however, you may store integers that are as large as
2,147 ,483,647.

CONVERTING IBM PC BASIC PROGRAMS 6-6

As you begin to convert your programs, you will quickly
spot the areas that are likely to cause you frequent trouble.
Once you have accomplished one or two complete conversions
the process should become simple and relatively easy.

SECTION I

THE TRACE WINDOWS

INTRODUCTION
TO SECTION II

e

In this section we explain the trace windows and special
features of the Professional BASIC™ environment. In the intro-
duction you had a chance to sit back and watch a demonstration
of some of the features in Professional BASIC™ (to repeat this
demo with Professional BASIC™ already loaded, enter ## on the
Command Screen). This section is designed to take you step by
step through the process of using the full tracing capabilities of
Professional BASIC™ to see your programs run,

To aid you in learning about the many additions to the
BASIC environment, there are several programs on the Profes-
sional BASIC™ disk. To load these programs enter load dem
followed by one of the following characters. The example
programs are listed below:

GOSUB with line numbers

GOSUB with line labels

GOSUB with multiple statement lines
DATA/READ statements

sort a list of names using SWAP statement
FOR/NEXT with arrays

LSET/RSET statements and file buffer window
LSET/RSET statements (no "field" statement)
indentation example - L window
SOUND/PEEK statements

prime numbers calculation

== hd OO TN
T LI T | R T 1 O R

INTRODUCTION TO SECTION 11 1-ii

PRINT/LOCATE/COLOR statement
matrix inversion
WRITE statement - sequential file 1/0
INPUT statement and syntax checking
RND random statement
*sieve benchmark"”
string variable screen
WHILE/WEND
divide by zero - program

TR T T R

l
m
n
P
r
s
w
x
z

To make using the tutorials even easier three of these
demos can be loaded from within Professional BASIC™ by simply
pressing <#> followed by the letter of the program. Those three
demos are:

m = matrix inversion
1 = PRINT/LOCATE/COLOR statement
z = divide by zero - program
For example, to load the matrix inversion demonstration, at
the > prompt, type either:

>#m or >load demm

Then enter srun to semicompile the program and be placed
on the List Trace Window. Press <Enter> to start the trace.
To pause the trace and single step press the <space bar>.
Pressing the <Enter> key resumes full speed tracing. The
<Break> key (upper right corner key on keyboard) will suspend
the program and return you to the Command Screen.
Remember, the screen on which commands are entered, the
screen on which program output is sent (via the PRINT
statement) and the trace screens are all maintained separately.
Hence if you were to run a program that has no screen output

INTRODUCTION TO SECTION 11 11-iii

ybu would be looking at a blank screen, but the program would
still be running.

The following chapters will introduce you to how the system
works in more detail, There is a lot going on but if you follow
the examples you should soon find that after some practice it is
a simple system to use.

In this section you should become familiar with the features
of program execution and the concept of visible program
execution presented in Professional BASIC™. Because you will
be working with a number of different screens and keys, keep
the Professional BASIC™ Quick Reference Card handy.

1.

UNDERSTANDING
THE WINDOWS

In this chapter you will begin to explore the true magic of
Professional BASIC™. This chapter provides some of the
groundwork necessary to understand what is happening while
you trace a program.

Load Professional BASIC™ by inserting the program disk in
drive A and entering: PB (PB8 if your computer doesn't
have an 8087 numeric coprocessor) at the DOS A> prompt.
When the initial screen appears, press any key to clear it and go
to the Command Screen. If the self-running demonstration is
operating, press <Break> twice to get to the Command Screen.

The standard prompt in Professional BASIC™ is a ">°
symbol. Whenever the Command Screen is displayed with this
symbol along the left and a blinking cursor (box), you may enter
a command.

7-1 KEYBOARD CONTROL

There are multiple screens being independently maintained
in Professional BASIC™ - the program output screen, the
Command Screen, and all the tracing windows. It is important
to understand how the functioning of the keyboard changes
when going from one of the three basic types to another.

UNDERSTANDING THE WINDOWS 7-2

Pressing the <Break> key (the key at the far upper right of
the keyboard with *Scroll Lock" written on top of the key and
"Break" on the front) will return you to the Command Screen
from any screen, while suspending the execution of the
program. <Ctrl Break> will do the exact same thing.

While the Print Screen
(normal program output) is Being Viewed

In Professional BASIC™ the keyboard has a dual role while
a program is running and the normal program output screen
(Print Screen) is displayed:

° First, in normal mode the keyboard interacts with
the program in the typical way. That is, if there
are statements within the program that expect
keystrokes, then the keyboard is used to input
those keystrokes. Operations like selecting menu
options, responding to queries from the program,
and providing input data to the program are done
with the keyboard.

° Second, with the <Alt> key held down, the
keyboard is used to switch from the normal output
screen to one of the Professional BASIC™ windows
or to stop and restart program execution while
viewing the output. To change to a trace window,
hold down the <Alt> key while pressing the appro-
priate key for the window. The Alt key can be
used with the <Esc> key, <Enter> key, <space
bar>, and all the normal alphabetical keyboard
(white colored) keys.

<Alt space bar> will stop program execution, if it
is currently running, and put the system in "single

UNDERSTANDING THE WINDOWS 7-3

step” execution mode. If the program is currently
stopped, each press of <Alt space bar> will cause
the next instruction to be executed (single step
execution of the program). However, the normal
program output will continue to be displayed on
the screen.

<Alt Enter> will return the program to full speed
mode if it is in single step mode. The normal
program output will continue to be displayed on
the screen.

While a Trace Window is Being Viewed

When a program is running (either at single step or full
speed execution mode) and one of the tracing windows is being
displayed, the keyboard is controlling the trace window display.
Make sure the Caps Lock and shift keys are "off". The Status
Line should not show a "c, s, or a* in position G (Section 7-2),
The keyboard is "talking" to the trace environment. By
pressing the letter corresponding to a window, that window will
be displayed. The cursor and other keys used for special control
actions on a tracing window will also be in effect. See the
quick reference card for a summary of all the key commands
which affect the tracing windows and environment.

If you need to input information into the program you are
tracing you may do so from any of the trace windows (except
the P screen) by holding down the <Alt> key while entering the
information. For instance, as you view an INKEY$ statement
waiting for input, hold the <Alt> key and press any other key.
This will "send" a keystroke(s) to the program,

If the <P> or <X> key is pressed while in the trace system,
control will be switched to the normal output screen of the

UNDERSTANDING THE WINDOWS 7-4

program (to the *Print Screen®). Once that screen is displayed,
the keyboard is then "talking" to the program.

If you are in single step mode in a trace window and then
press the <P> key, the program will remain suspended. If you
had pressed <X> instead of <P> the system would switch to the
output screen and go to full speed execution.

While on the Command Screen

The rule is the same as for the Program Output or "Print
Screen'. The keyboard does not communicate to the tracing
environment unless the <AlIt> key is held down.

If a program was running and was suspended, ended, or
encountered an error that caused it to end, then it is still
possible to reenter the tracing system and examine any window.
Thus if a program error halted execution you can switch to any
tracing window to see the status of the program and examine
the circumstances which lead to the error.

A special note: It is possible to view the Command
Screen as a window. If in the window system you press the C
key, the current status of the Command Screen can be viewed,
but not written to. Thus, you can either view the *Command
Screen Window® while in the tracing system or be on the
Command Screen entering commands and editing programs.

7-2 THE STATUS LINE

The first line on the screen, in the tracing system, contains
information about the system. Some of the items are displayed
now and some are "dormant”, hence not activated and displayed

Reference A B [of D E FG HI | K L M N OPQ R
Status line 10 1 000 cm holdx csa CNK Dv step fO g0 24 80 VPf end

FIGURE 7-1 Example of status line

UNDERSTANDING THE WINDOWS 7-5

at this time.

However, we will explain all the potential infor-

mation that can be displayed on the status line now.

A.

E.

The first number on the left of the status line is
the line number of the statement about to be
executed,

The second number is the cumulative number of
instructions executed (including the one about to
be done). Or, we could refer to this number as
the "serial number" of the instruction about to be
executed.

The third number is a kind of speedometer,
showing the number of instructions per second
being executed.

If the Control Master™ is being used (such as
when the self-running demo is in effect), a cm
will show.

If the <space bar> is pressed while Control
Master™ is being used, the action will stop and
Control Master™ will be in "hold® mode. The
word "hold" appears on the Status Line between
cm and the system mode indicator. If the <space
bar> is pressed again, a single step execution of
the next instruction will be executed. To return
to continuous operation, the <Enter> key must be
pressed.

Reference
Status line

FIGURE 7-1

Example of status line

UNDERSTANDING THE WINDOWS 7-6

F.

The next position indicates the system state:

X -

initialized state. No program has
been run.

the program is in execute state. A
press of the <space bar> or <Enter>
will begin execution.

the program is in suspension. This
will happen when <Break> has been
pressed and the user is placed on the
Command Screen with the > prompt
and blinking cursor displayed.
Program execution can be resumed at
the point it was halted by pressing
<Enter>. |If the program is edited
while in this mode the status changes
toa"t". :

the system is neither in execution nor
suspended state. The program has
been altered and execution cannot be
simply resumed. To run the program
again, enter "run® or "srun” from the
Command Screen,

the running program halted in an
error.

the program which ended in error has
been edited and execution cannot be
resumed (similar to the "t" state).

The next three positions show the status of the
Ctrl, shift, Alt keys. When the Ctrl, shift, and
Alt keys are pressed a "c, s, or a" appears on the

screen.,

If all three keys are pressed at once the

display would show csa.

Reference A B
Status line 10 1

FGH J K L M N OPQ R
X Cs

(o] D E 1
000 cm hoid a CNK Dv step fO g0 24 80 VPf end

FIGURE 7-1 Example of status line

UNDERSTANDING THE WINDOWS 7-7

lo

The next two positions show the status of the
Caps Lock and Num Lock keys. If the Caps
Lock key is toggled on, a "C" is displayed. If the
Num Lock is toggled on an "N" is displayed. If
both are switched on at the same time the display
shows CN.,

There is a "keyboard lock® mode toggled by the 5
key when the keypad is functioning in the cursor
control (not numeric) mode. Pressing the 5 key
causes a "K" to be displayed in inverse video next
to the position where the N would be displayed.
When this mode is toggled on, the Ctrl, shift, and
Alt keys can be toggled to be continuously on or
off. With this feature it is possible to control all
the operations of Professional BASIC™ with one
finger at a time. It is even possible to perform a
system reset, by pressing the <5> key, the <Ctrl>
key, the <AlIt> key, and then the key one at
a time. This is particularly helpful for the handi-
capped. '

The active window(s) being displayed is indicated.
If two windows are shown simultaneously on the
screen (see Section 8-5), then a display like IDv
would be shown. In this example the list trace (l)
window would be on the left side of the screen
and the variable (v) window would be on the
right. The > symbol shows that keyboard control
is addressing the right (v) window. To address the
left side of the screen, press the <left cursor>
key. The display would then be IKv. The <right
cursor> key switches control back to the right
half of the display. If only one window is
displayed then a single character is shown.

Reference
Status line

A B C D E
10 1 000 cm hold

FIGURE 7-1

Example of status line

UNDERSTANDING THE WINDOWS 7-8

L.

P.

*step" or "full" mode is shown next, to indicate if
the program trace is currently set to run at full
trace speed or to execute only one instruction per
press of the <space bar>. If no program is active
this space is blank.

The "f" followed by a number shows the current
number of active FOR/NEXT loops and
WHILE/WEND combinations (nestings).

The *g" and the number display the number of
GOSUB statements that are "active".

The next two numbers refer to the row and column
of the screen. When you are using the Command
Screen, these numbers are the row and column
position of the cursor. For any other type screen,
they are the row and column of the Print Screen
output. Thus you can see where a print statement
is placing its output on the screen without going
to the Print Screen itself.

The next character to be displayed is a "V°,
displayed with whatever attribute was last used to
display program output. If characters are being
output to the Print Screen by the program in
normal mode (i.e., color 7,0) then the *"V" will
appear normally. If the current character being
output to the coordinates shown is being displayed
in inverse video (i.e., color 0,7), then the "V" will
be shown in inverse video.

The next indicator is a "P". It is related to the
program output to the "print" screen. 'P" is
displayed if one of the Professional BASIC™

Reference A B

C D E N OPQ R
Status line 10 1 _000 cm hold

G | KL M
csa CNK Dv step fO g0 24 80 VPf end

FIGURE 7-1 Example of status line

UNDERSTANDING THE WINDOWS 7-9

screens is being shown instead of the normal
program output screen (Print Screen), and that
output screen has been changed in some way since
the last time it was looked at. With this indicator
it is possible to work with the tracing and other
screens and be informed when a statement in the
program is executed which affects the normal
program output screen (Print Screen). You can
switch to the Print Screen to check what
happened, return to one of the Professional
BASIC™ windows, and the "P" indicator will be
turned off until another change is made to the
Print Screen.

To the right of the position where the "P" is
displayed is a number that may range from 0 to f,
where a=10, b=11, ¢=12, d=13, e=14, and f=15.
This indicates the number of characters that are in
the keyboard buffer for the current BASIC
program at any point in time.

The last thing which may be displayed on the
screen relates to creating or editing lines of
BASIC code. When you are approaching the
maximum size of a line of code (311 characters),
the display will indicate how far you are from the
last position, A message like "end-4" will
indicate that the cursor is four characters from
the maximum line length. At the last position the
display will be in inverse video and read "at end".

Figure 7-1 shows every possible element of the status line
with something in each position. This example line may not be

possible.

It is used here for illustrative purposes only to show

where and how each of the elements can be displayed relative
to each other,

8.

ENTERING THE
WINDOW ENVIRONMENT

This chapter is designed to introduce you to the windows
into program execution that Professional BASIC™ offers. Here
we encourage you to examine several example programs as they
execute utilizing certain keys to watch and inspect various
aspects of execution. You will learn about the following
screens and commands:

<L> List Trace Window
Profiling Options:
<1> List Trace
<2> Unexecuted Statements
<3> Statement Execution Count
<4> Execution Histogram

< Time Trace Window

<S> Split Screen

<W> Wide (full screen)

<P Exchange screens

<> Print the listing with the current List Trace
option.

 The *back up® command

ENTERING THE WINDOW ENVIRONMENT 8-2

8-1 OPENING THE DOOR TO WINDOWING

Several sample programs are available. Each helps to dem-
onstrate something about the Professional BASIC™ system.
(These programs are included for demonstration purposes only
and do not necessarily have any practical utility.) The sample
programs can be accessed by typing in load dem® where * is
one of the call characters (see the first page of the Introduc-
tion to Section I1).

To start with a simple demonstration enter:
load demi

at the > prompt. The program will be loaded and your screen
should look like Figure 8-1. To begin running the program you
have two options. First, you could enter run as you would
normally do in BASIC (or press the <F2> key). However, there
is no program output so the screen will just be blank. The
second option - the srun command - is the one to use for the
demonstration,

Enter: srun on the Command Screen, or press <S> and
then <F2>. This "stop run" command prepares to execute the
first statement in the program, switches to the List Trace
Window, and waits. At this point, the program is listed and the
white line is on the first program line to be executed.

8-2 THE LIST TRACE WINDOW -- L Key

With the program in memory (loaded with the load demi
command) and with the system at the List Trace Window (put
there by the SRUN command) we will proceed with the dem-
onstration. You will see the program code, but in an expanded

---------------....---r

i
Start.of .program; j=0:k=0:1=0
a=1

\

Mid.point;if a=1 or a=2 then if a=1 then j=j+1 else k=k+l else l=1+1
a=a+l:if a<=3 then goto Mid.point else goto Start.of.program

. 8-1 Command Screen after DEMI.BAS program
loaded
20 4 000 x 1 step £0g0 1 1vo
10 Start.of.program;j=0
k=0

30 Mid.point;if a=1l or a=2 then
if a=1 then
i=it1
else
k=k+1
else
1=141
a=a+l
if a<=3 then
goto Mid.point
else
goto Start.of.program

40

~

DEMI.BAS program

is

List Trace window with line 20 highlighted -

ENTERING THE WINDOW ENVIRONMENT 8-3

and indented format (see Figure 8-2). Notice how the program
has been rearranged so that the logical order of the statements
is more clearly displayed than on the Command Screen. You
can go back and forth between the Command Screen Window
and the List Trace Window by pressing <C> when the List Trace
Window is displayed or the <L> key when the Command Screen
Window is displayed. Compare the formats of the program lines.
(NOTE: When on the Command Screen Window notice that the
cursor is not displayed and blinking. This is not the "active’
Command Screen.)

Now press <space bar> once. See how the top line has
been updated to show that the second instruction is about to be
executed (2), but that the line number indicator has gone blank.
The white line is over the second of three instructions that
together constitute line 10.

The system works such that each trace line shows only an
individual instruction. Thus, only one instruction (the first of
the three) is identified with the line number label 10. As
program control (indicated by the inverse video bar) moves to
instructions other that the first one on a line of code, the
position on the status line which indicates the next instruction
to be executed is blank. The other two instructions on line 10
are also shown on separate screen lines in the List. Trace
window. (This one-to-one correspondence of one instruction
per screen line and use of the line number to identify just the
first instruction on the line also holds for other parts of the
trace system, which we will examine later in the manual.)

Press <space bar> two more times and line 20 is high-
lighted as the next one to be executed. The status row shows
line 20 as the next to be executed and it will be the 4th in-
struction to be executed.

ENTERING THE WINDOW ENVIRONMENT 8-4

Notice that the count on instructions is actually per in-
struction and not based on lines in the BASIC program, which
may have multiple instructions separated by colons.

Load another sample program at this point by doing the

following:

1.
2,
3.

Press <Break> to go to the Command Screen.
Enter: load demm or #m

After the program is loaded enter "srun® or press
<S> and then <F2>.

An extremely useful feature of the List Trace Window is the
ability to scroll up and down through the program listing.

The up and down cursor keys will scroll one line at
a time up or down.,

<PgUp> and <PgDn> move a whole screen at a
time up or down.

<Home> will move to where the first instruction is
displayed at the top of the screen.

<End> will move to where the last instruction is
displayed as the last line on the screen.

The usual operation of the LIST command is available on
the Command Screen. But the operation of the cursor keys to
scroll up and down a program listing in the List Trace Window
can be a much easier and quicker way to look at your program.

40 x 1 step £ 2 g0 5 1 VPO
start;a=4
n=n+l
if n mod 2 = 0 then
color 7,0
else
color 0,7
print
print
print "Run number is ";n,date$,time$
rem ARRRRRARRARANRARAARANRRAAA
read in values of x
and set y to unit matrix
RARRRARRRARARRRARARARAA AR

nl=1 to a

@D~

-]

17 next n2

0l
18 restore
19 print

print "The X matrix is"

20 for nl=1 to a
21 for n2=1 to a
22 if n2=4 then

FIGURE 8-3 List Trace window (1 - normal screen)
DEMM.BAS program - ’

~ ﬂ

40 x 1 step £ 2 g0 5 1 VPO

n=n+l
if n mod 2 = 0 then
color 7,0
else "
color 0,7
9 print
print
print "Run number is ";n,date$,time$
10 rem RAARARRRRAARRANRRARAANN AR
11 rem read in values of x
12 rem and set y to unit matrix
13 rem ARRRRRARRARRARARAAARAAARA
14 for nl=1 to a
15 for n2=1 to a

6
6 start;a=4
7
8

18 restore

print

orint "The X matrix 1s"
or nl= to_3a

1 for n2=1 to a

TF n2=1 then .

ENTERING THE WINDOW ENVIRONMENT 8-5

Additional Features of the List Trace Screen

Profiling -- There are four variations of the List Trace
window. The normal window with the program lines shown has
already been discussed. The other three variations present in-
formation about the profile of instructions executed. Options 3
and 4 are not available on a split screen. With keyboard control
addressing the List Trace window the options are:

1. Press <1> to display the normal List Trace window.

2. Press <2> to underline on the screen all lines in
the program which have not been executed at
least once. (On a color monitor the lines will be
blue. On the COMPAQ computer, the lines will be
highlighted instead of underlined.)

3. Press <3> to show a count of the number of times
each instruction in the program has been executed
since execution was begun.

4, Press <4> to show a histogram of the relative
frequency of instruction execution.

The second option can be very useful in finding out about
instructions in the program which have not been executed after
a set number of iterations or "execution paths.® The third and
fourth options may underscore the relative importance, at least
in terms of execution frequency, of certain sections of code
within a program.

The noex command entered on the Command Screen at the
> prompt will reset the counters associated with this profiling
system to zero. This will allow you to run a program, suspend

16 4 x 1 step £ 290 5 1 VPO
start;a=4
n=n+l
if nmod 2 = 0 then
color 7,0
else
color 0,7
9 print
print
print "Run number is ";n,date$,time$
lo rem ARRRRRRRRARARARARARRRARAR
11 rem read in values of x
rem and set y to unit matrix
13 rem ARRRRRRARRARRRARRRARNRARAR
14 for nl=1l to a
15 for n2=1 to a

- RSN -]

nex
oDl
18 restore

19 print

print "The X matrix is"
20 for nl=1 to a

21 for n2=1 to a

22 if n2=4 then

COOOOON MW 1= 1 1t ot ot ot bt ot © O =t 1
-
~

e’

FIGURE 8-5 List Trace window (3 - counts frequency «

executions) - DEMM.BAS program

—
16 40 . x 1 dgtep. £ 290 5 1 VPO
. wAARAL 6 start;a=4
ARRNAR " n’n.}l
bbb 8 if nmod 2 = 0 then
color 7,0
else
bbb color 0,7
X233 9 print
RARRAR print
beboladolold print "Run number is
i3 222 2] 10 rem RERRRRRRRRAAANR AR
ARRAAR 11 rem read in values of
bbb 12 rem and set y to unit
tif?hﬁ 13 rem AARRRRRARAARARARR
ankiae 14 for nl=l to a
ARRRRRRRARARRRAAN 15 for n2=1 to a

Y Y Y X S 222222222223 2222 22 2 2 22 nex
RRRRAARRAAS 'nl
18 restore
19 print
print "The X matrix i
20 for nl=1 to a
21 for n2=1 to a
22 if n2=4 then

ENTERING THE WINDOW ENVIRONMENT 8-6

execution at some point by pressing <Break>, and continue
program execution from that point on, seeing the profiler infor-
mation as it has accumulated information from the suspended
point forward. Only this command and the LOAD command
reset the counters. Editing and inserting new lines and per-
forming multiple *RUNS" can be done while "accumulating®
profile information,

Printing the Program Listing -- Instead of using the
LLIST command to print the program, you may want to have a
listing that corresponds to the format of the List Screen. The
<J> key prints the program using the current profile option.
The List Screen must be displayed at the time the <J> key is
pressed. The entire program is printed no matter which part of
the program is currently being displayed. If you want to quit
the listing before it is entirely printed, use the <Esc> key. The
status of the Professional BASIC™ system is not changed by this
command. When printing is complete, processing can continue
from the current status.

8-3 THE "BACK UP® COMMAND -- B Key

Press <space bar> and execute at least one instruction.
Press and hold . This is a "back up" command which will
display the screen that was displayed one instruction back.
Literally, if before is pressed you were to change to one of
the other screens, then pressing would not only back up one
instruction but would also show the screen exactly as it
appeared before. To try this press <T> to display the Time
Trace window. Then press and you will see the display flip
between the two trace screens.

58 561 x t step £ 2 g 0 13 11 VPO
548 52 y(nl,n2)=y(nl,n2)/t
y!1(4,2) -.2850627
549 53 next n2
n2s% 3
550 52 y(nl,n2)=y(nl,n2)/t
y!(4,3) -.3010263
551 53 next n2
n2% 4
552 52 y(nl,n2)=y(nl,n2)/t
yl(4,4) 1.00114
553 53 next n2

n2% S
554 ynl
nls 5
555 54 print
556 print "and the inverse is"
557 55 for nl=1 to a
nly 1
558 56 for n2=1 to a
n2%

559 57 if n2=4 then
condition is FALSE
rint tab(20*n2-19);y(n

e’

FIGURE 8-7 Example of Time Trace window (T) - DEMM
program

ENTERING THE WINDOW ENVIRONMENT 8-7

8-4 TIME TRACE WINDOW -- T Key

The Time Trace window displays a list of each instruction
executed as it is run. The next instruction to be executed is
always shown at the bottom of the screen in inverse video. If
you press <Enter> the instructions will scroll up off the screen
as the program is run. This screen represents a time sequence
(or historical) record of program execution, while the List Trace
window presents a spatial view of execution,

The historical record rewind -~ A very useful feature with
this window is to scroll back into the history of instructions that
have been executed, by 256 to 512 instructions (depending on
how many instructions use two lines, to display the instruction
and the assigned value for a variable or array element). Simply
press <up cursor> to scroll back through the record and <down
cursor> to move forward again. <Home> will move all the way
back into the record to the earliest instruction kept. <End>
will move forward in time to the current instruction about to be
executed.

Notice in the Time Trace Window that as each instruction is
executed four things are shown:

° First, the instruction itself is shown.

® Second, the sequence (line) number of the instruc-
tion, if appropriate, is shown. As with the status
line at the top of the screen, if the instruction is
not the first one on a program line then no
sequence number is shown,

° Third, the "serial number®' of the instruction is
shown. This represents the cumulative total
number of instructions executed by the program

16
612

614
615

616
617

618
619
620
621
622
623
624
625
626

627

628 x
58 next n2
n2% 5
59 next nl
nls 5
60 goto start
6 start;a=4

al
7 n=n+l
T ny 2

8 if n mod 2 = 0 then
condition is TRUE
color 7,0
9 print
print
print "Run number is\
lo rem tﬁ!.l.ﬁ*"t"'hﬁ\
11 rem read in values o\
12 rem and set y to uni\
13 rem .t'.ﬁhttii‘tﬂh..\
14 for nl=1 to a

nls 1
15 for n2=1 to a

t>1 step £ 2 g 0 20 1 VPO

. rem IS 222 2222232222222 2222 2 2
5 rem a is size of matrix
6 start;a=4
7 n=n+l
8 if nmod 2 = 0 then
color 7,0
else
color 0,7
9 print
print

print "Run number is ";n,date§,t\
lo rem RRRARRRARARRRARRARRAARARAR
11 rem read in values of x
12 rem and set y to unit matrix
13 rem 'YX 2222232332222 23222 2)

14 for nl=l to a

0l
18 restore
19 print
print "The X matrix is"
20 for nl=l to a

FIGURE 8-8

Split (S) Time Trace window (T) and List Ty

window (L)

ENTERING THE WINDOW ENVIRONMENT 8-8

since the run or srun command was given. This
number can easily be a five or even six-digit
number, if the program has been running for a long
time.

° Fourth, variable values are displayed to provide a
convenient way to track what is happening as the
program executes. For any variable assigned a
value by the instruction, that value will be shown
on the line after the instruction. For all "|F"
statements, the conditional result is indicated as
"TRUE" or "FALSE". For all "READ" statements,
the data read is displayed. For POKE statements
the full address, the old contents, and the new
contents are given. For the MOTOR statement its
on or off status is given. For DEF SEG statements
the full address is given.

8-5 SPLITTING THE SCREEN -
TWO WINDOWS AT ONCE -- S Key

Both the List Trace and Time Trace windows are quite
valuable in themselves. But it is possible to put both on the
screen at the same time by pressing <S> to "split* the screen
into a left and a right half.

With the Time Trace Window displayed, press <S>. The
status line will show the screen displays as "t>I". This means
that the Time Trace Window is on the left side of the screen and
the List Trace Window is on the right. Keyboard control is
pointing to (or addressing) the right window (List Trace
Window). Press the up and down cursor keys to verify this.
Now press the left cursor key to switch control to the left
window. The display will appear as "t<I'. Now press the up

16 x 1>t step £ 2 g 0 20 1 VPO
4 reom RARARRAARRARAAR AR AR RN A AR 612 58 next n2
5 rem a is size of matrix n2% 5
6 start;a=4 613 59 next nl
7 n=n+l nlg 5
8 if nmod 2 = 0 then 614 60 goto start
color 7,0 615 6 start;a=4
else al 4
color 0,7 616 7 n=n+l
9 print ny 2
print 617 8 if n mod 2 = 0 then
print "Run number is ";n,date$,t\ condition is TRUE
10 rem RRRRRRARRRRARAARRA AR AR AN 618 color 7’0
11 rem read in values of x 619 9 print
12 rem and set y to unit matrix 620 print
13 rem *AARARRRRRANRARRRRARRARNS 621 print "Run number is\
14 for nl=1 to a 622 10 rem *rAAAAARARRERNRN\
15 for n2=1 to a) o 623 11 rem read in values o\
16 ixead x{nk,n2) e 624 12 rem and set y to uni\
17 next nz 625 13 rem 'ﬁ"iti...".kiﬁ\
ynl 626 14 for nl=1 to a
18 restore nlg 1
19 print 627 15 for n2=1 to a
print "The X matrix is” n2% 1
20 for nl=1 to a R8s 16 read xi{nl,n2)

FIGURE 8-9 Exchanged (E) Time Trace window and List Tr
window - DEMM.BAS program

ENTERING THE WINDOW ENVIRONMENT 8-9

and down cursor keys and verify that keyboard control
addresses the left window.

At this point the Time Trace Window is on the left and the
List Trace Window is on the right. Press <Enter> or <space
bar> to see the coordinated trace action with both screens.
Since each side of the screen is limited to 40 columns there may
be some information displayed on the wide screen not shown on
the split, narrow window. For instance, long instructions will be
truncated with a "\ " character at the end of the line to
indicate there is more. By pressing the <W> key, the left
screen will return as a wide, single screen.

Coordination of List Trace and Time Trace Windows -- Press
<S> to split the screen. With the system in the "tDI" configu-
ration, press <E> to "exchange” the two screens. This is a very
special configuration. With this setup (shown on the status line
as I>t), and in single-step mode, it is possible to reverse
backward through the most recent instructions executed by
pressing <up arrow>, and see on both screens the coordinated
replay of the program execution. In a sense, you can run the
program backward and forward (using the cursor keys) and look
at an "instant replay” of the flow of execution of a section of
the program. (A note on this: you are not really running the
program in reverse and changing the whole state of the system.
It is a coordinated method of replaying the Time Trace Window
and doing it in coordination with the List Trace Window.) This
can be a very useful capability to understand just how a part of
a program works. It is also an exceptional educational tool.

As you run back through the historical record, notice that
the last line on the Time Trace screen is no longer shown in
inverse video. It is shown underlined (on some computers, such
as the COMPAQ, it is shown in high intensity). Thus you can
know if the current instruction is the next one to be executed

ENTERING THE WINDOW ENVIRONMENT 8-10

by the system or a previous instruction. When you press <space
bar> or <Enter> the system will leap forward to the *current”
state and execute the next instruction(s).

In summary the new commands just reviewed are:

<>
<
<$>
<wW>

List trace window (options: <1>, <2>, <3>, <4>,
and <J>

Time trace window

split the screen into two windows, left and right
change left window to single, wide screen with
one window

exchange the left and right windows when screen
is split

Back up one screen.

Play with these windows until you feel comfortable with
how to control them and the format of the information. These
are only the first of the many visual presentations Professional
BASIC™ offers you as you begin to trace your programs.

9.

TRACING
PROGRAM VALUES

This chapter deals with the screens that keep track of
program data and values. Professional BASIC™ has a number of
screens which display the current values of variables and array
elements. In this chapter you will learn about the following
windows and commands:

<V> Variable Window
<A Array Window
<R> Two Dimensional Array Window (single precision)

Because most programs have a number of variables and array
elements, you will learn how to scroll through the values on the
screen, There are numerous commands to allow you to travel
with varying speed through the elements, so have your Quick
Reference Card available for reference.

9-1 Variable Values

Load the #m sample program, press <S> and then <F2> after
the program is loaded.

Now press <V>. The variable screen will be displayed
(Figure 9-1). Seven variables will be displayed - all the
variables in the current program. The screen indicates several
things:

(16 628 x v step £ 2 g 0 20 1 VPO
al 4
£1 .07617372
nt 2
nlg 1
n2% 1
n3s 5
ti .998861

771
FIGURE 9-1 Sample Variable (V) window - DEMM.BAS pro
gram
r 566 x 1>v step £ 2 g 0 13 31 vPO

46 rem x(nl,nl). do same to

‘7 rem ﬁ*-ﬁ*.ﬁﬁi’iﬁi*’khﬁtt*tﬁﬁh****\
48 for nl=1 to a

49 t=x(nl,nl)

50 x(nl,nl)=1.

51 for n2=1 to a

52 y(nl,n2)=y(nl,n2)/t
53 next n2

nl
54 print ’

print "and the inverse is"
55 for nl=1 to a
56 for n2=1 to a
57 if n2=4 then
61

print tab(20*n2-19);y(nl,n\
58 next n2
59 next nl
60 goto start

61 data 1 e o4, 3, 2
62 data .2 , 1 e o3, .1
63 data .1 , .1 , 1 » o1
64 data -.2 , .2 , .3 , 1

58

al
£l
n3
nls
n2%
n3%

ti

4
.07617372
1

1

3

5

.998861

17/771

TRACING PROGRAM VALUES 9-2

° The total number of variables in the program is
shown. The 7/7 displayed below the list of
variables says that there are a total of 7 variables
in the program and the 7th variable is shown on
the screen.

° The current value of each variable is shown to the
right. As the program runs you can see the value
of each variable change. The line number in
which the variable was last assigned a value is
shown to the left of each variable name. (The
fact that no line number is shown may mean that
the instruction was not the first instruction in the
line. This is consistent with other displays in
which the line number is represented.)

Press <Enter> to run the program in full trace mode (if not
there already) and watch the variables change value. At any
point you can stop by pressing <space bar>, and then restart by
pressing <Enter>,

Display the Command Screen by pressing <C>. Note that
the cursor is not present. No entry is allowed. The screen is
presented for reference purposes only. (The <Break> would
have to be used to get the active Command Screen.) Now press
<S$> to split the display. From the Command Screen this
command will default to showing the List Trace Window on the
left and the Variable Window on the right. This very useful
combination lets you see the program execution proceed while
monitoring the values of all the variables.

Now press <Break> and load in another program; enter
load deml. Enter srun at the > prompt, Then split the screen
by pressing the <S> key. The split screen display will show the
List Trace Window on the left and 10 out of 16 variables on the

r' 89 000 x 1>v step £ 2 g 0 2 39 VPl ‘
£=0
70 for ny=1 to 25 alphal 144.0947
80 sqy=(ny-13.) *(ny-13.)/alpha
90 sx=sqr (beta* (1-sqy)) betal 1521
100 f=l-f
110 if f£=1 then £l 0
s1l=40-sx
$2=40+s8x nl 0
s3=1
else nx! 38.61338
sl=40+sx
82=40-38x ny! 2
83=-1
for nx=sl to s2 step s3 p! 0
rl 0
ay sl! 55.61338
160 face;read y
if y=0 then s2! 24.38662
restore
for n=0 to 360
r=sin(n) 10 / 16 (more ...)
next n

FIGURE 9-3 split List Trace window and Variable
window - DEML.BAS program

r

1 1 x a step £ 0g0 1 1VO

x1(1,1) 0

x!(2,1) 0

x1(3,1) 0

x1(4,1) 0

x1(1,2) 0
x1(2,2)
x1(3,2)
x1(4,2)
x1(1,3)

o o o o o

x!(2,3)

10 / 32 (more ...)

TRACING PROGRAM VALUES 9-3

right side. In this case there are more variables than can be
shown on the screen. To look at the 11th through 16th
variables the variable screen can be scrolled with the cursor
keys:

- <up cursor> and <down cursor> to move one
variable,

- <PgUp> and <PgDn> to move 10 variables,

- <Home> and <End> to move from the first to the

last variable,

Try using these keys. (Remember, the left and right cursor keys
switch control back and forth from the left side of the screen to
the right when the screen is split. The cursor and other control
keys will act upon whichever screen side is designated at the
time.)

9-2 Array Window -- A Key

With another sample program, we can examine the Array
Window.

Press <Break> and load in the matrix inversion program by
entering #m at the > prompt. Then enter srun followed by
<A>. The Array Window will now be displayed. See Figure 9-4
for a sample Array Window. Arrays are maintained in separate
areas of memory by Professional BASIC™ and have their own
system of access and display. Since array size can be
extremely large, there is a special set of keys that let you
navigate through the array space to find the elements you want
to see.

sqoNoNoNaNoNoRoRONG

-10000 -1.000 - +1 +10 +100 +1.000 +10.000
Cursor Keys: downcusor (}) +1 Home key -first element
(V, A Windows) up cursor (1) -1 End key -last element
PgDn +10 + key -10 next anay
PgUp -{0 - key -10 previous amay
FIGURE 9-5 Number of array elements scrolled in the Arra

window (A) - numeric keys along top of keyboard

39 2118 x a step £ 3 g 0 25 1 VPO

16 x1(1,1) 1
x1(2,1) 0
x1(3,1) []
x1(4,1) 0
x1(1,2) 0
x1(2,2) .92
x1(3,2) .06
x!1(4,2) .28
x1(1,3) .1956522
x1(2,3) .24

10 / 32 (more ...)

FIGURE 9-6 Array window (A) displaying first ten elements
the "x" array after program execution has beg
- DEMM.BAS program

TRACING PROGRAM VALUES 9-4

As with the Variable Window, the cursor keys perform the
same type of operations to scroll through the elements of the
arrays. In addition to these cursor keys there are two more
sets of keys,

First, <#> and <-> (use the grey + and - keys to the right
of the numeric keypad) allow you to move forward in the array
space to the first element of the next or previous array. If an
array has 10,000 elements and a subsequent array has 10
elements followed by another very large array, it could be a
long and tedious search to find the smaller array nestled in
between the two large ones. Pressing <+> lets you jump from
the beginning of one array to the next with ease. <-> jumps
back.

Second, the number keys along the top of the keyboard, 1
through 0, are used. The keys perform the movement operations
illustrated in Figure 9-5. This symetrical and methodical layout
can provide you with all the power you need to browse through
the array elements set up in the array space in memory.

Figure 9-6 shows a typical Array window. Note that it is
nearly the same as the variable screen, except that the sub-
scripts in parentheses indicate the elements in the array.

'9-3 Two Dimensional Single Precision Arrays - R Key

This window allows you to view two-dimensional single
precision arrays in an easily comprehensible form. This graphic
presentation can be a great aid in both teaching and debugging.
While you are still in the array screen (the #m program should
still be executing) press <Home>. The screen should be display-
ing the first 10 elements of the "x" array. Look at them closely
and then press <R>.

39 2118 x r step £ 3 g 0 25 1 VPO
x!
(*, 1) (*, 2) *, 3) *, 4
(1,*) 1 0 .1956522 .173913
(2,* 5 .92 .24 ’ .06
(3,*) 0 .06 .97 .08
(4,") 0 .28 .36 1.04

2113 42 qwertyuiop;next n2
n2% 3

2114 35 i{f n2=nl then
condition is FALSE

2115 36 f=x(n2,nl)/x(nl,nl)
£1 .06521739

2116 37 for n3=1 to a
n3s 1

2117 38 if n3=nl then

condition is FALSE

—

FIGURE 9-7 Two-Dimensional Array (R) window displaying 1
*x" array (This window for two-dimension
single-precision numeric arrays only)
DEMM.BAS program

TRACING PROGRAM VALUES 9-5

Due to the physical size limitations of the screen, the Two
Dimensional Array screen only supports single precision arrays.
If your two dimensional array is double precision you must use
the Array Screen to view it.

Figure 9-7 is an example of a typical Two Dimensional
Array screen. The screen is split horizontally to allow you to
view sixteen elements of an array. The bottom half of the
screen is devoted to the Time Trace window to allow you to
view the execution of the code that affects the arrays. Press
the <Enter> key to watch the screen in action.

As with the Array and Variable Windows, there are keys to
allow you to scroll and page through the different arrays and
their associated elements.

If you wish to view your values in hexadecimal, press the U
key while the Two Dimensional Array Screen is active.

To change from one array to another you may use the grey
<+> and <-> keys on to the right of the numeric keyboard, in
the same fashion you have used them on the Array Screen.
Whenever you move forward to a new array, or backward to a
previous array, the first element of the array will be in the
upper left corner of your screen.

To move horizontally through the array, you may use the 4,
5, 6, and 7 keys located along the top of your keyboard.
Pressing the 5 or 6 key will move the display one column to the
left or right. Pressing the 4 or 7 key will move the display 10
columns to the left or right. Vertical motion is accomplished
using the cursor keys, as with the Variable window.

Now you have looked at two fundamental sets of windows.
The first set, in Chapter 8, dealt with viewing the program code

TRACING PROGRAM VALUES 9-6

and how control flowed through the program. This chapter
dealt with the windows which allow you to view the current
values of all variables defined in the program.

The next chapter will deal with windows which allow you to
examine the execution of certain statements in BASIC -- the
FOR/NEXT pairs, GOSUBS, and READ/DATA statements.

10.

'LOOPS, SUBROUTINES
& DATA STATEMENTS

In this chapter we deal with iteration, subroutines, and
reading data. You will learn about the following keys:

<P FOR/NEXT Window
<G> GOSUB Window
<D> READ/DATA Window

10-1 FOR/NEXT WINDOW -- F Key

Looping within a program using the combination of the
"FOR" and "NEXT" statements can be viewed via the FOR/NEXT
Window. To see how this special window works, load in a
sample program:

- Enter load demm (or #m) at the > prompt
- Enter srun to initiate execution
- Then press <F> to look at the FOR/NEXT window.

Initially the screen will indicate that there are no active
loops. With the <space bar>, single step until you get to the
19th instruction (Remember, the "serial® number of the instruc-
tion about to be executed is displayed at the top of the screen,
to the right of the line number about to be executed). This will

~

39 2118 x f step £ 3 g 0 25 1 VPO
33 for nl=1 to a f
nl
first 1 last 4
step 1 index 2
34 for n2=1 to a
42 gwertyuiopinext n2
first 1 last 4
step 1 index 3
37 for n3=1 to a
41 next n3
first last 4
step 1 index 1

- _

FIGURE 10-1 For/Next window (F) - the DEMM.BAS program
15 19 x f step£f1g0 5 1 veo
14 £o; nl=1 to a -
e e
FIGURE 10-2 For/Next window (F) displayed at the 19th

struction - DEMM.BAS program (Note num
*19" on status line at top of screen)

LOOPS, SUBROUTINES & DATA STATEMENTS 10

|
N

initialize the first FOR/NEXT loop. There are five parts to the
display on this loop:

® The pair of statements containing the *FOR" part
of the statement and the "NEXT" part.

) The four parameters involved with the loop:

The beginning index value; first

- The ending index value; last

The increment value in the loop; step
- The current value of the index; index

Now press <space bar> once more. The second FOR/NEXT
loop will become active. Up to four active loops can be
displayed on this screen (the four "most active")., Notice that
the number of active loops is displayed to the right on the
status line next to the f. (The g indicates the number of
GOSUBS that are active.)

Now press <Enter> to run the program at full trace speed.
Notice how the screen display changes as the number of con-
currently active FOR/NEXT loops changes. Notice how the
value of the index changes. As it reaches the last value of the
loop, that loop becomes inactive and is dropped from the
display.

Now split the screen by pressing <§>. The List Trace
Window will be displayed on the right. Because of space limita-
tions the display has become abbreviated. Instead of the words
“first, last, step, and index" now the initials *f, I, s, and i" are
shown.

15 19 x £>1 step £ 1 g0 5 1 VPO
—— print "M ATRIX I NVERS\
14 for nl=1 to a Tam ARARRRERAAANARA AR AR R A AR
(nl rem a is size of matrix
start;a=4
n=n+l
if nmod 2 = 0 then
color 7,0
else
color 0,7
9 print
print
print "Run number is “;n,date$,t\
10 rem S22 2222222222222 22 2 2 2
11 rem read in values of x
12 rem and set y to unit matrix
13 rem ARRRARRRARRARRAR AR AR R AR AN
14 for nl=1 to a)
15 Foxr p2sl to a
16 read x(nl,n2)
17 next n2
,nl
18 restore
19 print
print "The X matrix is"

m
-
-
-

@~NAUV e

FIGURE 10-3 Split For/Next and List Trace window
DEMM.BAS program

200 790 000 X g step £ 0 gl3 4 1 VPO
10 Banksia; gosub Bucslyptus

40 Eucalyptus; ige sub Dampiera

50 Dampiera; ‘gosub Darwinia

60 Darwinia; gosgb Crenulla

70 Cronulla; igosub Wooiosware

80 Wooloware; ‘go s Caringban

90 Caringbah; ‘gosul Miranda

100 Miranda; ggsub:¥vmea

110 Gymea; igai #ub Kirrawee

150 Myriocephalus;gesub floribundum

170 Wahlenbergia;gosul Eggs.and.Bacon

180 Eggs.and.Bacon; gasub Gompholobiium

150 Gompholobium; gosub Nymphea,gigantea.mayimus

FIGURE 10-4a Sample Gosub window (G) - DEMB.BAS progran

LOOPS, SUBROUTINES & DATA STATEMENTS 10-3

10-2 THE "CLICKER" -- N Key

As a program runs in either normal execution mode or while
a trace window is active, it is possible to hear it executing by
toggling the "clicker” on by pressing <N> (or, <Alt N> if you on
the Print Screen). Each instruction executed is a click. As
program speed increases or decreases the frequency of the
clicks increases or decreases. By toggling the "clicker" on
while running a few programs you will be able to get a feel for
the speed of execution of various parts of BASIC code just by
listening. If you ever want to get a feeling of how fast double
precision calculations are versus integer or single precision cal-
culations, you can construct a simple example program which
consecutively executes the same calculation each way. Put
each calculation in a FOR/NEXT loop which executes it about
200-500 times.

10-3 GOSUB WINDOW -- G Key

The GOSUB Window shows the list of active subroutines and
is displayed by pressing <G>. Only the statement containing the
GOSUB statement is shown. There may be several statements
on the line of code with the GOSUB. Therefore, the GOSUB
statement that is active for the line will be shown in reverse
video. Like the FOR/NEXT loops, the number of active subrou-
tines (the nesting level) is shown on the right of the Profes-
sional BASIC™ status line, next to the g.

There are three demonstration programs which specifically
show the operation of the GOSUB display: dema, demb, and
demc. The dema and demb programs are identical except that
one uses line numbers and the other takes advantage of one of
the unique features of Professional BASIC™ -- labels for lines.
Any time a GOSUB or GOTO is used, you can reference a line by
a line number or, if the line is labeled, by a name.

000 X] step £ 0 g17 4 1 vpo

FIGURE 10-4b

Sample Gosub window (G) - DEMA.BAS progran

10

20
30

40

50

60

80

70

10
else

9
a=0
gosub 30
a=a+l7
gosub 40
goto 10
a=a+2
gosub 40
a=a+3
gosub 50
a=a+5
gosub 50
a=a+6
gosub 60
a=a+8
gosub 60
a=a+9
a=a+l0
gosub 70
a=a+ll
amarly
return

252 000 X 1>g step £ 0 g5 4 1 VPO
10 a=0:gosub+30:a=a+17:gosub 40
30 a=a+2:gosub 40:a=a+3:gosub 50
40 a=a+5:go8ube50:a=a+6:gosub 50
50 a=a+8:f§osub 60:a=a+9
60 a=a+l0:gosyb 70:a=a+ll

_

FIGURE 10-5

Split (S) List Trace window (L) and Gosub wind
(G) - DEMC.BAS program

LOOPS, SUBROUTINES & DATA STATEMENTS 10-4

From the Command Screen enter: load dema or load
demb. Begin running the program by entering run. Then
switch to the GOSUB window by pressing <Alt G>. As the
program runs notice how the display always shows the GOSUB
statements that are active and the order of their nesting.

Go back to the Command Screen and invoke the load demc
demo program. Run this program with the screen split, showing
the List Trace window and the GOSUB Window. To do this:

1. Press <Break> to go to Command Screen.

2. Enter: load demc to load demo program

3. Enter: run or press <F2>,

4. Screen will be blank

5. Press <Alt $> and then <G> to display List Trace
Window on left and the Gosub Window on the
right.

In this program the GOSUB statements are contained on lines
with multiple instructions. See how the active GOSUB state-
ments are highlighted in inverse video. Slow program to single
step mode with the <space bar> and observe the change in the
screen while single stepping.

10-4 DATA WINDOW -- D Key

The next window to be discussed is the DATA Window,
which traces the activity of READ and DATA statements. The
demd program will demonstrate how this window works. From
the Command Screen, load in this program and run it. (Enter
load demd to load program, then press <F2>.) Split the screen
with the <Alt $> keys and then bring up the DATA Window by
pressing <D>. (Remember: the part of the status line that
shows the active windows will show a I>d when the List Trace

110 69 000 x 1>d step £ 2 g 0 13 1 VPO
1 defint a-z 10 data cronulla,wooloware,carin

2 locate 10,10 20 data miranda,gymea,kirrawee
print"This program demonstrates \ 30 data sutherland,jannali,como

3 locate 11,10 40 data mortdale,penshurst
print"window. Press <Alt-D> and\ 50 data hurstville,allawah

4 locate 12,10 60 data carlton,st. peters,town

print"to see data being read fro\
10 data cronulla,wooloware,caringbah
20 data miranda,gymea,kirrawee
30 data sutherland,jannali,como
40 data mortdale,penshurst
50 data hurstville,allawah
60 data carlton,st. peters,town hall
70 loop;for nl=16 to 1 step -1
80 restore
90 for n2=1 to nl
100 read jkl$

120 next nl
130 goto loop

FIGURE 10-6 Split (S) List Trace window (L) and Data windc
(D) - DEMD.BAS program

LOOPS, SUBROUTINES & DATA STATEMENTS 10-5

Window is shown on the left, the DATA window is shown on the
right, and the keyboard is currently addressing the right side of
the display. If you press <left cursor> the display changes to
I<d and the keyboard addresses the left half of the display.)

As the program runs it will encounter the READ statement
and data will be picked up from the DATA statements and used
by the program. You can easily see which data element is next
to be read since it is highlighted in inverse video. Notice that
as the RESTORE statement is executed, the pointer to the next
data element to be read is reset to the first one. (The load
deml program and the load demm programs also use the data
statement. Run them with the DATA and List Trace windows
viewed together to see how data is read in and used by the
program.)

As with the <A> and <V> windows, if there are more DATA
statements than can be put on 24 lines, use the cursor keys to
scroll up and down or the <Home> and <End> keys for the
beginning and end.

1.

PROGRAM OUTPUT

L .

This chapter deals with that all-important aspect of your
program, the one that is most visible to the user, the Output
Screen, There are several different Print Screen options in Pro-
fessional BASIC™. In this chapter you will learn about:

<P> Print Screen

<X> Full Speed Print Screen
<*> (Prtsc) Print Trace Window
<Q> Print/List Window

There are four keys which will switch to some form of
showing the program output. The P and X keys will switch to
the normal output screen and let you see the output of program
PRINT statements. The other two options will stay within the
tracing system - PrtSc and Q keys.

11-1 Print Screen -- P Key

Load a sample program which demonstrates the Print
Screen. Enter: load deml at the > prompt. Enter run (or press
<F2>) to begin execution of the program. The pumpkin design
will be repeatedly drawn on the screen, alternating between
inverse video and normal output. To stop the action press <Alt
space bar>. You can control the output to this Print window

200 5088 000 x 8 * step £ 1 g 0 19 39 VPO
AXXAXXXXXXXXXXXXXXX XXX XXX XXXXXKX
XXXXXXXXXXXXAXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXX
XXXXXXXXXXXXXXXXXXXXXXAXXXXXXXX XX XXX XXXXXXXXXXXXXXXX
XXXAXXXXXXXXXXXX XXX XXAXXX XXX XXX XXX XXXX XXX XX KX XXX XXX XXX XXX
XXXAXXXXXXXXXXXXXXXX XXXXXAXXXXAXXXXXAXKXX XXXXXXXXXXXXXXXXXXXXX
XXXAXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXX

XXXRXXXXXXXXXXXXXXXXXX AXXXXXXXXXXXXXX XX XXAXXXXXXXXXXXXXXXXXXX
AXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX AXXAXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX x XXXXXXXXXXXXX x KXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXXXXX XXXAXXXXXXXXXXXXXAXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXAXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXAXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXKXXXXXXXXXXXXXXXXXXXXKXX
XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX
AXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XX XXX X XXX XXX XXXXXXXXXXXXXXXXXXXX
KXXXXXXXXXXXX XXX XX XXX XXX XXX XX XXX XXX XXAXX XXX XXX XXX XX XXX XXX XX
XX
AXXXXAXAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX

FIGURE 11-1 Sample Print Output screen (* - PrtSc) -
DEML.BAS program

PROGRAM OUTPUT 11-2

with the <Alt space bar> and the <Alt Enter> keys.
Remember, the normal keyboard control is for program input on
the Print Screen. The <Alt> key is needed to direct keystrokes
to the trace system. You can switch to the List Trace or any of
the other windows and then back to the Print Screen at will.
What may be interesting is to go to the List Trace Window and
execute up to the point that an "x" is about to be printed on
the screen by a "print" statement (line 130). With the system
in step mode, switch to the Print Screen <P>and press the <Alt
space bar> once and watch the "x" be printed on the screen.

Very minute tracing of screen building can be viewed by
using the various Professional BASIC™ windows and by control-
ling program execution with the single step control.

11-2 Full Execute on Print Screen -- X Key

Pressing the X key is somewhat like pressing the P key.
The difference is that the X key always places the system in full
speed execution mode and turns the "clicker® off if it is
activated.

11-3 Print Trace Window -- * (PrtSc) Key

The Print Trace window is a copy of the Print screen (P
key) but is in the tracing/viewing system. There are a few
differences, however:

° The top line of the screen shows the status line,
not the top line which would normally appear on
the Print screen.

5091 000 x
XXXXXXXXXXXXXXXX
XXAXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX
AXAXXXXXXXXXAXXXAAXXXXXXXXXXXX
AXXXXXXXXXXXXAXXXXXX XXXXXXXXXXX

AXXXXXXAXAXXXXXXXAXXXX XXXXXXXXXX
XXXXXXXAXXXXXXXXXXXXXX XXXXXXXXX
AXXXAXXXXXXXAXXXXXXXXXX XXXXXXXX

XXXXXXXXAXXXXXXXXXXXXX X XXXXXXX
AXXXXXXXXXXXAXXXXXXAAXXXXXXXXXXXXXXXXX
AXXXXXXXXXXAXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXAXAXXXAXXX XXX XXXXXXXXXXXXXXKX
AXXXXXXXXXXXXXXAXXXXXXXXXXXXXXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

AXXXXXXXXXAXXXXXXXAXXXXXXXXXXXXXXXXXXXX

AAXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXXXXAXXXKXXXK XXXXXXX

130
140
160

170

180
190

step £ 1 g 0 19 40 VPO
locate ny,nx
print "x";
next nx
Yy
face;read y
if y=0 then
restore
for n=0 to 360
r=sin(n)
next n
goto start
read x1
1 %2
for n=xl to x2
locate y,n
print " ";

AXXXXAXXXXXXXXXXXXXXXXX X 210 goto face

XXXXXXXXXXAXXXXXXXXXXXXXXXXXXXXX 220 data 06,29,29,06,51,51
XXXXXAXXXXXXXXXXXXXXXXXXXXXXXX 230 data 07,28,30,07,50,52
XXXXXXXXXXXXXXXXXXXXXXXXXX 240 data 08,27,31,08,49,53
XXXXXXXXXXXXXXXXXXXXXXX 250 data 09,26,32,09,48,54

XXXXXXXXXXXXXXKX 260 data 10,25,29,10,31,33,10,47,49,\

XX 270 data 11,40,40,12,39,41,13,38,42,\

FIGURE 11-2 Print/List window (Q) - DEML.BAS

program

PROGRAM OUTPUT 11-3

° Execution of the BASIC program is slowed if you
watch execution with this window. It is to be
used just for trace/viewing purposes. The real
output screen allows the BASIC program to run at
full speed.

° The window may be split via the *S" key and then
combined with any other window. The * Window
will appear on the left when the horizontal cursor
location on the Print Screen is in the range 1-40.
If the horizontal cursor location is in the range
41-80, the * Window is shown on the right and the
other window on the left.

11-4 Print/List Window
-- Q Key (adaptive L and * windows)

The Q Key is a split screen combination of the List Trace
and the Print Trace windows. It allows you to see output as it
is sent to the output screen at all times (except for the first
screen line which is replaced by the status line). This is the
only combination accessible via the Q Key. In all other
respects it behaves as any other screen when split with the *
Screen as detailed in Section 11-3.

12.

ADVANCED TRACING

This chapter is for the programmer who is more familiar
with the machine. The features described here are most useful
to someone with a grounding in file 1/0 (sequential and random
access files) or with Assembler.

12-1 THE FILE INPUT/OUTPUT WINDOW -- 1| Key

When you are reading and writing information to sequential
or random access files the Input/Output Window may be viewed
to see the information currently in the file buffer for each
opened file. When the size of the file buffer exceeds the width
of the screen you may use the "5 and "6" keys along the top of
the keyboard to scroll horizontally through the buffer and view
the information in it. The "5" and "6" keys move the buffer
left and right one character, respectively.

With a full screen, 80 bytes of the buffer may be displayed.
If the screen is split, then 40 bytes are shown,

To move from one file buffer to another press the <+> key
repeatedly to see the next file buffer in ascending order and the
<-> key to look at the next lower file buffer.

You may toggle between seeing the data in the file buffers
in ASCII or Hexadecimal representation with the <U> key. This

80 252 000 X i step £ 190 13 1 VPO
file # 1 buffer address 3£3£0

buffer length 00200

l...5...10...15...20...25...30...35...40.,.45...50...55...60...65...70...75...80
abcdefghijkl pgrstuvwxyz

_J

FIGURE 12-1 Sample File 1/0 window (1) - DEMG.BAS progral

516 e y>L full £f0g0 1 1VO
3d46f d3 74 6f 20 44 e0 61 8c .to ..a. 10 def int a-z
34477 d3 ff £f 44 00 12 00 00 ...D 20 def seg = &h4000

3d47£€ 00 00 00 00 00 01 01 00cw. 30 for i = 0 to 255
343487 20 20 20 34 39 10 00 28 49..(40 poke i,i
3d48£ 00 1lc 00 00 00 00 00 01 t

3d497 01 31 06 a5 3d d4 e0 74 .l..=..t
3d49f 8d ad 3d e0 78 8c d0 28 ..=.x..(
3d4a7 e0 6e 31 8c d2 2c e0 6e .nl..,.n
3d4af 31 8c d5 29 43 26 00 12 1l..).&..
3d4b7 00 00 00 00 00 00 00 0Lc.ue
3d4bf 01 00 20 20 20 35 30 10 .. 50.
3d4c7 00 2a 00 1lc 00 00 00 00 .*......
3d4cf 00 Ol 01 6e 06 a5 3d d4 ...n..=.
3d4d7 e0 78 8d d0 28 e0 6e 31 .x..(.nl
3d44df 8c d2 2c e0 6e 31 8¢c d5 ..,.nl..
3d4e7 29 ad 34 £l 31 2e 88 d3).=.l...

23:43:13 07-26-1984
current def seg is 4000
00000/02f4c 0

default file is pokehex.bas

_J

FIGURE 12-2 File 1/0 (1) and List Trace window (L)

ADVANCED TRACING 12-2

can be valuable in cases where control characters, spaces,
blanks, and binary encoded data are placed in the buffer and
you want to see exactly what is there at all times.

The demg demo program may be run to see the action in
the <I> Window. Enter: load demg on the Command Screen
and press <F2>. Then press <I> to see the buffer action as the
program is running. Press <S> to split the screen, showing the
1/0 Window on the left and the List Trace Window on the right.

12-2 THE PSEUDO CODE WINDOW -- M KEY

The M Window shows the small steps involved in evaluating
an arithmetic expression with Professional BASIC™. The Pseudo
Code Window is invoked by the "M" key. This window can only
be full width.

At the top of the screen, you will see 11 fields labeled.
These are:

Pseudo-Code Contents of

Register Register Normal Form

ia Integer "A’ Decimal

ib Integer "B" Decimal

ea Single Precision "A" Decimal

eb Single Precision "B" Decimal

da Double Precision "A" Decimal

db Double Precision "B" Decimal

stra String "A" Decimal length + ASCI11
strb String "B" Decimal length + ASCII

ja,jb,jc Array element address 5 Hexadecimal digits

58 578 000 x m step £ 2 g 0 14 31 VPO

ia 2 ib 1

ea eb

da db

stra

strb

ja ib jc

58 next n2

Load ia from variable n2%
Load ib from temporary
danias mEE e
Store to variable n2%
exit from pcode

_J

FIGURE 12-3 Pseudo code window (M) - DEMM.BAS progras

ADVANCED TRACING 12-3

The statement to be executed is shown below the registers,
and the rest of the screen is blank. At this point you could
decide to switch to another screen. If you go further, you must
stay and view the window for the entire statement calculation.

Press the <space bar> and the lower half of the screen is
filled with the pseudo code associated with evaluating that
expression. For each P-code a description of the operation is
given,

Each single step will do a P-code operation. Note that
many steps are needed to perform a complete BASIC statement.
When single stepping through the pseudo code, values are loaded
to registers and displayed. As they are stored or used in opera-
tions, their values will disappear. This is an attempt to make
the operations clearer by only showing relevant registers. The
<K> key may be used to display the values in all the registers.

Values are normally shown in decimal using the print
format. By pressing <U> the values in the numeric registers
may be shown as two hexadecimal words with the high order
number first and the low order number second. The single
precision and double precision numbers are shown in the 8087
format as 2 and 4 words with the high order word first and the
low order word last. Strings are shown as a length (always in
decimal) followed by a 2 digit hexadecimal number for each
byte. Pressing <U> again toggles back to decimal representa-
tion.

The display may be run at full speed with the <Enter> key,
or a screen switch may be made. The statement is always
completed at full speed before the screen switch is done.

80 44 000 x - i>1 step £ 1 g 0 13 1 VPO
file ¢ 1 buffer address 3£3f0 5 locate 10,10
buffer length 00200 print"This is a demo of the file\

6 locate 11,10
print"Press <Alt-I> and then <S>\
7 locate 12,10
print"LSET and RSET into file bu\
10 def int i-n
20 qw$="1234"
30 xx$="abcd"
40 a$="abcdefghijklmnopgrstuvwxyz"
50 field #1,13 as qw$,13 as xx§
60 repeat;for k9=1 to 13
70 lset qw$=lefts$(as,k9)

90 next k9
1...5...10...15...20,..25...30...35...40 100 goto repeat
abcdefghijk qrstuvwxyz

FIGURE 12-4 Split Memory (Y) window and List Trace wind
(L) - POKEHEX.BAS program

ADVANCED TRACING 12-4

12-3 THE MEMORY DISPLAY WINDOW -- Y KEY

During the execution of a program, you can use the Memory
Display Window to observe the contents of a section of memory.
The wide screen displays 256 bytes and the split screen displays
128 bytes. You can change the location of the section at any
time. The system date and time, default filename, and the
current DEF SEG are displayed. On the bottom line there are
two hexadecimal numbers separated by a slash followed by a
space and then a decimal number. The first hex number is the
amount of string space used by the current program. The
second hex number is the amount of string space available. The
last number is a decimal number representing the percentage of
string space used.

To see the Memory Window, enter load demi and then enter
srun. Then press the Y key to obtain the Memory Display
Window. The first column on the display is the address of the
first byte displayed on that same line. Each line displays 16
bytes, thus each address in the first column is 10 hex greater
than the address above it. On the right side of each line is the
ASCIl character display that matches positionally each hex
value on that line, If you attempt to view memory beyond the
point that DOS recognizes as the end of physical memory all
values will be displayed as question marks to avoid causing a
PARITY CHECK 2 error.

The window is controlled with the following keys:
Home The Home key sets the address to zero.

+ The Plus key toggles the display between byte-and-
character format and word format.

ADVANCED TRACING 12-5

- The minus (or dash) key toggles the character display
between showing all characters and showing only printable
characters, with non-printing characters replaced by a period.
The printable character values range from 20 hex to 7E hex.

0-9 The number keys are used to increment and decrement
the address. On the full screen, each key is associated with a
hex digit position in the full address format. Thus each hex
digit position can be "scrolled® to get the desired value. Since
the split screen is only half as wide as the full screen, the
values are different so they can match the display change
action. Keys 1 through 5 decrement the address where the 1
key is maximum decrement and the 5 key decrements by one.
Keys 6 through 0 increment the address where the 6 key incre-
ments by one and the 0 key is maximum increment. Although
this technique is awkward to explain with words, using it is very
straightforward and easy. The following table is presented for
your information, but you can happily control the display
address without reference to the table. The table values are
hexadecimal.

Lets do an example to watch the Memory Window work.
Enter "load pokehex"® or type in the following program.

10 def int a-z

20 def seg = &H4000
30 for i = 0 to 255
40 poke i,i

50 next

Enter "srun”.

Press <Y> to get the Memory Window.

We want the window address to be hex 40000.

Press the <zero> key 4 times to get an address of 40000 hex.
Press <S> to split the screen.

ADVANCED TRACING 12-6

Press the <space bar> repeatedly to step the program until you
see the values being "poked" into memory.

Press <left cursor> to change screen control from right to left.
Press <Enter> to get continuous execution.

As the new characters approach the bottom of the display, use
the <seven> key to keep the action on the display.

At the end of the program, you will be at the Control Screen.
Press <Alt Y> to go to the Memory Window. Use the <four>
key to position the display to see the beginning of the *poked"
characters.

Toggle the <minus> (or <dash>) key to see the two formats of
character display - all characters or just printable characters.
Toggle the <+> key to see the word format.

Practice using the number keys to position the display at a
specific byte such as placing the *A" character in the left hand
corner.

Note the current DEF SEG value, default filename (for the
LOAD and SAVE commands), date and time display, and the 3
numbers showing string space used.

SECTION i

BREAKPOINT SETTING AND
ERROR MESSAGES

13.

BREAKPOINT SETTING

When running a program you can tag one or more lines for
the program to stop execution on. That is, by identifying a
given line in the program as a break point, you can let the
program run at full speed and if that line is encountered in the
running of the program then execution will halt at that precise
place. This can be quite valuable in program debugging when
you want the program to charge ahead and execute a number of
steps and then halt at a particular place so that you can view,
in detail, execution of the next instructions and/or examine the
status of variables. Without this facility you would have to
slowly execute up to this point in single step mode or in a slow
trace mode. Such a search could take a long time, plus you
might overshoot the mark and miss what you wanted to see.

Breakpoints remain set until you explicitly remove them.
You can set a breakpoint in either of two ways:

1. On the Command Screen you may enter the
command: break n where n is a line number or a
label. Multiple breakpoints may be set with a
series of break n commands. One line is specified
with each 'break' command. To remove a
breakpoint use a "nobreak n" command. The
"nobreakall” command removes all breakpoints.

BREAKPOINT SETTING 13

2

2, When on the List Trace Window you can toggle a
breakpoint on or off by pressing the <Z> key while
the inverse video bar is on the line. An asterisk is
placed between the line number and the first
character on the line to indicate a breakpoint. If
a "break n' command was used to set a breakpo-
int, the asterisk is also shown.

With the List Trace Window displayed you can scroll up and
down the listing and see the lines where breakpoints are set.
Note that you set breakpoints on a program line, not an indivi-
dual instruction on a line (where there are multiple instructions
on the line).

Setting one or more breakpoints does not affect the speed
of program execution.

When the program encounters a breakpoint and the Print
Screen (normal output) is displayed, the system switches to the
list trace screen and is halted on the instruction where the
break was set.

When you are in the tracing system in "FULL" mode and a
breakpoint is encountered, it is as if the <space bar> were
pressed to put the system into "STEP" mode. The program is
not suspended from execution in this case. You may continue
execution by pressing the <space bar> or <Enter>.

The commands in summary are:
break n set a breakpoint on line n

break label set a breakpoint on the line with the
designated label

BREAKPOINT SETTING 13-3

nobreak n remove the breakpoin on line n

nobreak label remove a breakpoint on the line with
the designated label

nobreakall remove all breakpoints

14.

ERROR MESSAGES

14-1 SYNTAX ERRORS

Syntax error messages are handled by the *Try abc..."
prompt instead of numbered, fixed messages. The Dynamic
Syntax Checker™ catches syntax errors as they occur. After
the second attempt to input an invalid character from the
keyboard, the Dynamic Syntax Checker™ presents a list of valid
characters to try. Thus, this prompt is called the "try" line.
See Chapter 5 for more on the Dynamic Syntax Checker™.
Syntax errors in externally created programs are checked as the
program is loaded into Professional BASIC™. See Chapters 5
and 6 for more details.

14-2 RUN TIME ERRORS

All other errors are caught during the semi-compile or
during the execution of the program. Those errors caused by
temporary current equipment conditions are handled by Profes-
sional BASIC™ with a windowed error message that allows the
user to correct the condition and continue the program.
Examples of this type error are: "printer not ready*, "drive not
ready”, and "write protected disk". Most other types of errors
are caught during the semi-compile before execution begins.

ERROR MESSAGES 14

2

14-3 LISTING OF ERRORS

There are three listings of error messages that follow. The
first list contains those errors that can occur during the semi-
compile. The second and third lists are errors that can occur
during run time and therefore can be trapped by the ON ERROR
statement. Professional BASIC™ provides an extended error
number and literal in addition to the ERR and ERL values. ERR
corresponds to the error numbers in PC BASIC. ERR2 is a
special variable that is the Professional BASIC™ extended error
code. For example: when ERR equals 9, ERR2 could be 901 or
902. This extended error code allows clearer definition of errors
while maintaining consistency and compatibility with PC BASIC
error code numbers. In addition, if you want to display the
Professional BASIC™ error message instead of coding your own
message, the special variable ERR$ is a string that contains the
same error message that would have been displayed by the
system if the ON ERROR statement was not being used. Thus on
an error condition, the MicroSoft BASIC error number, the
extended Professional BASIC™ error number, the error line, and
the error message are available for your use.

14-4 SEMI-COMPILE ERROR MESSAGES
Since these error messages are displayed only during a
semi-compile and will not be trapped by the ON ERROR

statement, they do not have error numbers.

Attempt to set the character,[char] ,to ,[type], it is
already set to ,[type].

ERROR MESSAGES 14-3

There is no room to build the address table for resolving
goto targets.

The transfer to (line number, or label), is invalid.

The two variables in a swap are not the same type.
There is no program.

A function has more than 8 arguments.

A number is trying to be assigned to a string variable.

A multi-__argument function name is not recognized or has
an argument of the wrong type.

A multi-argument function was referenced with no
arguments.

A multi-argument user-defined function has been defined
more than once.

A multi-argument user-defined function is not found.

A function with no arguments was referenced as one with
arguments.

A user-defined function with no arguments was defined
more than once.

A user-defined function with no arguments was not found.

A single argument function name is not recognized or has
an argument of the wrong type.

ERROR MESSAGES 14-4

A string is trying to be assigned to a numeric variable.
An array reference has a string as a subscript.
An array reference has the wrong number of subscripts.

An operator has mismatched operands, one numeric and the
other a string.

Argument duplicated in DEF FN().

Assignment with that special variable is invalid.
Expression should be a string.

FIELD variable is not a string.

More than 8 arguments in DEF FN().

Not found.

Illegal function reference, or array not dimensioned.
LINE INPUT variable is not a string.

LSET or RSET variable should be a string.

That transfer is not valid.

The 1st argument in a MID$()= is not a variable.
The 1st argument in a MID$()= is not suitable.

The expression is too complex, please simplify.

ERROR MESSAGES 14-5

The index must be the same in both FOR and NEXT.
The label,labelname,is doubly defined.

The label, labelname,is not defined.,

The last clause in this IF has an incomplete loop.
The name has already been dimensioned.

The substitution of the user defined function with no
arguments caused the expression to grow too large.

There is a number where there should be a string.
There is a string where there should be a number.

There is an unknown function on the left-hand side of an
assignment.

There is no match for this NEXT,
There is no match for this WEND.
These loops are not completed.
There is no program.

There is no room to build the address table for resolving
goto targets.

There is no room to store a descriptor for (variable).

The transfer to (line number,or label), is invalid.

ERROR MESSAGES

14-6

This EXITFOR was not contained in a FOR loop.

This EXITWHILE was not contained in a WHILE loop.

This loop is not completed.

This loop is not paired correctly.

14-5 NUMERICALLY LISTED ERROR CODES

MS Code PB Code

2 200

3 301

4 401

5 501

502

503
504
505
506
507
508
509

Message

Data read is of wrong type.
RETURN without GOSUB.

READ has run out of data.

The index for an ON ... GOTO i

negative.

The index for an ON ... GOSUB i

negative.

Too deep in GOSUBs.

LOCATE row out of range.
LOCATE column out of range.
COLOR foreground out of range.
COLOR background out of range.
PRINT TAB() value out of range.
Unrecognized calculated error.

ERROR MESSAGES

MS Code

5

PB Code
510
511
512
513
514
515
516
517
518
519
520

521
522

523
524
525
526
527
528

529

Message

PRINT SPC() value out of range.
RESTORE, but no DATA statement(s).
FOR - too deep in loops.

Float $ + exp notation is illegal.

Float $ + negative number is illegal.
PRINT USING internal string
overflow.

No data for the PRINT USING
statement.

No characters in format string for
PRINT USING statement.

No format field defined in PRINT
USING statement,

No numeric field defined in format for
PRINT USING statement.

No string field defined in format for
PRINT USING statement.

The field width is out of range.

The field has exceeded the buffer
size.

DEF SEG value out of range.

POKE address is out of range.

POKE value is out of range.

In an INPUT # field, a number in a
numeric field is too large.

In an INPUT # field, there is a CR
inside a quoted string.

A numeric field has more than 24
digits.

Scientific notation double precision
number with single precision field -

AAAAN
.

ERROR MESSAGES 14-8

MS Code PB Code Message
5 530 Scientific notation single precision

number with double precision field -

531 WIDTH for Ipt1: is out of range.

532 OUT address is out of range.

533 OUT value is out of range.

534 WAIT port value is out of range.

535 WAIT AND value is out of range.

536 WAIT XOR value is out of range.

537 Invalid transfer via RETURN nn,

538 The filespec in a CHAIN statement is
not valid.

539 The transfer line no. in a CHAIN
statement is not valid.

540 RESUME nn transfer is invalid.

541 RESUME next climbs into a loop.

542 Unknown command.

543 Bad request structure length.

544 Seek error.

545 Unknown media type.

546 Sector not found.

547 Calculated error out of range.

549 OPEN record length is out of range.

560 SCREEN mode value out of range.

561 SCREEN apage value out of range.

562 SCREEN vpage value out of range.

563 Attempt to switch mono screen to 40
col. or graphics.

564 WIDTH value is out of range [108].

565 Attempt to do graphics in non

graphics mode.

ERROR MESSAGES 14-9

MS Code PB Code Message
5 566 The value of color is out of range.
567 Not in graphics mode for POINT
function.
6 601 Overflow.
604 WHILE - too deep in loops.
9 901 Subscript is higher than bound.
902 Subscript is lower than bound.
13 1301 Function has signaled an error.
14 1401 Run out of string space.
20 2001 RESUME encountered without an
error.
24 2401 Device not ready.
25 2501 Write fault.
2502 Read fault.
2503 General failure.
2504 Printer problem,
26 2602 Attempt to start a FOR loop with an

index already in use.

27 2701 Printer out of paper.

ERROR MESSAGES 14-10

MS Code PB Code Message
5201 WRITE # file number is out of range.
5202 PRINT # USING file number is out of
range.

5203 PRINT # file number is out of range.
5204 GET/PUT file number is out of range.
5205 OPEN file number is out of range.
5206 CLOSE file number is out of range.
5207 INPUT # file number is out of range.
5208 The file number in a FIELD statement

is out of bounds.

53 5301 The file cannot be found on this
disk(ette) or directory.
5302 OPEN file specification string is too
long. :
5303 OPEN file specification string has an
imbedded zero byte.
54 5401 OPEN file mode expression is not one
of 1,0, Ror A.
5402 The file is a READ ONLY file. It

cannot be opened as Output, Append
or Random.

5403 Cannot read from an OUTPUT or
APPEND or WRITE ONLY file.
5404 Access to this file is denied because
of it's file mode.
5405 The file cannot be accessed because it
is not open.
55 5501 The file cannot be opened because it

is already open.

ERROR MESSAGES

14-11

MS Code

58

61

62

63

67

68

70

72

74

75

PB Code
5801
5802

6101

6201

6301

6701

6702

6703

6801

7001

7201

7401

7501

Message

Cannot delete because a file by this
name is open.
A file by this name already exists.

Less data was written to the
disk(ette) than was requested. Check
for possible disk(ette) full condition.

An attempt has been made to read
beyond the end of the file.

The record number requested is zero
or negative.

Exceeds maximum open files allowed
by PC DOS.

Cannot create new file. Check for
directory full.

Exceeds maximum open files allowed
by Professional Basic.

Unknown device.

Attempt to write on write protected
diskette.

Data error (crc).

Device and directory must be the
same for both names.

An attempt has been made to write to
an INPUT or READ ONLY file.

ERROR MESSAGES

14-12

MS Code

75

76

14-6

MS Code
76
58
54
62

75

26

70

PB Code
7502
7503

7601

Message
The directory cannot be deleted
because it is not empty.
The pathname was not found.

A PC DOS error # nn has occured.

ALPHABETICAL LISTING OF ERROR MESSAGES

PB Code
7601
5802
528
5404
6201
7501
565
2602
563

7001

543

547

Message

A PC DOS error # nn has occured.

A file by this name already exists.

A numeric field has more than 24
digits.

Access to this file is denied because
of it's file mode.

An attempt has been made to read
beyond the end of the file.

An attempt has been made to write to
an INPUT or READ ONLY file.
Attempt to do graphics in non
graphics mode.

Attempt to start a FOR loop with an
index already in use.

Attempt to switch mono screen to 40
col. or graphics.

Attempt to write on write protected
diskette.

Bad request structure length.

Calculated error out of range.

ERROR MESSAGES

14-13

MS Code
67
58

54

24
67

67

PB Code
6702
5801
5403
5206
507
506
7201
200
523
7401
2401
6703
6701
513
514
512
1301

2503
5204

526

Message

Cannot create new file. Check for
directory full,

Cannot delete because a file by this
name is open,

Cannot read from an OUTPUT or
APPEND or WRITE ONLY file.

CLOSE file number is out of range.
COLOR background out of range.
COLOR foreground out of range.

Data error (crc).

Data read is of wrong type.

DEF SEG value out of range.

Device and directory must be the
same for both names.

Device not ready.

Exceeds maximum open files allowed
by Professional Basic.

Exceeds maximum open files allowed
by PC DOS.

Float $ + exp notation is illegal.
Float $ + negative number is illegal.
FOR - too deep in loops.

Function has signaled an error.

General failure.
GET/PUT file number is out of range.

In an INPUT # field, a number in a
numeric field is too large.

ERROR MESSAGES 14-14

MS Code PB Code Message
5 527 In an INPUT # field, there is a CR
inside a quoted string.
52 5207 INPUT # file number is out of range.
5 537 Invalid transfer via RETURN nn,
61 6101 Less data was written to the

disk(ette) than was requested. Check
for possible disk(ette) full condition.

5 505 LOCATE column out of range.

5 504 LOCATE row out of range.

5 517 No characters in format string for
PRINT USING statement.

5 516 No data for the PRINT USING
statement.

5 518 No format field defined in PRINT
USING statement.

5 519 No numeric field defined in format for
PRINT USING statement.

5 520 No string field defined in format for
PRINT USING statement.

5 567 Not in graphics mode for POINT
function.

54 5401 OPEN file mode expression is not one
of 1,0, Ror A,

52 5205 OPEN file number is out of range.

53 5302 OPEN file specification string is too
long.

53 5303 OPEN file specification string has an

imbedded zero byte.

ERROR MESSAGES

14-15

MS Code

[<20N% IS, IS, |

PB Code

549
532
533
601

524
525
5202

5203
510
508
515

2701
2504

2502
401
511
2001

541
540
301
1401

529

530

Message

OPEN record length is out of range.
OUT address is out of range.

OUT value is out of range.
Overflow.

POKE address is out of range.

POKE value is out of range.

PRINT # USING file number is out of
range.

PRINT # file number is out of range.
PRINT SPC() value out of range.
PRINT TAB() value out of range.
PRINT USING internal string
overflow.

Printer out of paper.

Printer problem,

Read fault.

READ has run out of data.

RESTORE, but no DATA statement(s).
RESUME encountered without an
error.

RESUME next climbs into a loop.
RESUME nn transfer is invalid.
RETURN without GOSUB.

Run out of string space.

Scientific notation double precision
number with single precision field -

AAAA
3

Scientific notation single precision
number with double precision field -

AAAAA
°

ERROR MESSAGES

14-16

MS Code

[NV RNE, RS, BN, BT, RyE, |

53

55

54

52

75

PB Code

561
560
562
546
544
901
902

7502

522

521
5405

5301

5501

5402

5208

538

501

502

7503

Message

SCREEN apage value out of range.
SCREEN mode value out of range.
SCREEN vpage value out of range.
Sector not found.

Seek error,

Subscript is higher than bound.
Subscript is lower than bound.

The directory cannot be deleted
because it is not empty.

The field has exceeded the buffer
size.

The field width is out of range.

The file cannot be accessed because it
is not open.

The file cannot be found on this
disk(ette) or directory.

The file cannot be opened because it
is already open.

The file is a READ ONLY file. It
cannot be opened as Output, Append
or Random.

The file number in a FIELD statement
is out of bounds.

The filespec in a CHAIN statement is
not valid,

The index for an ON ... GOTO is
negative.

The index for an ON ... GOSUB is
negative.

The pathname was not found.

ERROR MESSAGES 14-17

MS Code PB Code Message

63 6301 The record number requested is zero
or negative.

5 539 The transfer line no. in a CHAIN
statement is not valid.

5 566 The value of color is out of range.

5 503 Too deep in GOSUBs.

5 542 Unknown command.

68 6801 Unknown device.

5 545 Unknown media type.

5 509 Unrecognized calculated error.

5 535 WAIT AND value is out of range.

5 536 WAIT XOR value is out of range.

5 534 WAIT port value is out of range.

6 604 WHILE - too deep in loops.

5 531 WIDTH for Ipt1: is out of range.

5 564 WIDTH value is out of range [108].

52 5201 WRITE # file number is out of range.

25 2501 Write fault.

APPENDICES

A.

Professional BASIC DIFFERENCES

2.

IFee . THEN...ELSE

You cannot have a conditional NEXT statement. The
following line is not valid:

20 FOR 1=1 to A: IF I=5 THEN GOTO 10 ELSE NEXT |
FOR...NEXT

a. There must be one and only one NEXT for each FOR
statement. The following is not valid:

10 FOR I =1TON
20FOR) =1TOM
30 A(L)) = 1*)

40 NEXT

Line 40 may read, however: 40 NEXT },I
You may not have a NEXT statement within an

IFeee THEN...ELSE construct where the NEXT s
executed only if a condition is met.

Professional BASIC™ Differences A-2

3.

b.

You may not have a GOTO or RETURN n which enters
into the middle of a FOR...NEXT loop from outside
the loop. Returning to a call from a GOSUB is valid
however.

Arrays and DIM statements

de

b.

Ce.

d.

All arrays must always be dimensioned, even if there
are 10 or fewer elements.

Only integer constants (integers can range up to
2,000,000,000+ not just 32,267) may be used in a
dimension statement. Variables are not allowed.
DIM A(100000) is acceptable but DIM A(n) is not.

Arrays can only be dimensioned once and may not be
redimensioned during program execution.

An alternate form for dimensioning arrays is
DIM A(1901 to 2000)

This will set up an array A(i) as a 100 element array.
Only array element references in the range specified
are valid. You may also have negative references if
you define a dimension such as:

DIM A(-100 to 100)
Thus:
10 | = =50

20A(1) =1+ 1
30 PRINT A(-50)

Professional BASIC™ Differences A-3

4.

would be a valid set of program lines which would
assign =100 to the 51st element of the array and then
print -100 on the screen.

e. An array cannot be used as a field name in a FIELD
statement. Hence, ’

FIELD #1, 20 as A%$(1), 20 as A$(2), 5 as A%$(3)
is not valid.

f. Remember that the only restriction on array size is
the amount of available RAM.

Line Labels

A program line may begin with a name or label, such
as:

10 Start__initial_procedure; rem

The label can be any length (up to more than 300 charac-
ters), have upper or lower case letters and use an under-
score or period to separate words. However, there
cannot be any blank spaces in the middle of the label.

You may have GOTO and GOSUB statements which
refer to this line by the label instead of the line number.
In general, anywhere you would normally use a line
number in a program, you can use a label instead. It is
also possible to use combinations of labels and line
numbers in the same program.

The @ key may be used to finish typing already
defined labels, just as with a long variable name.

Professional BASIC™ Differences A-4

5.

6.

7.

SORTL will list all labels defined in a program and the
FIND command will show where in the program they are
used and referenced.

Line Numbers
a. Program line number 0 is not allowed.
b. Line numbers may range from 1 to 99999.

c. It is possible to load, save, and merge files without
line numbers. To load a file without line numbers be
certain that column one in the program file is a
blank. To save a program without line numbers, use
the SAVEU command.

Program storage

Programs are saved and read-in in ASCIl format
only. A file from BASICA must have been saved with the
,A option before it can be read into Professional BASIC™.

LOAD

In immediate mode you do not need to use quotes
around a filespec.

LOAD DEMA

will load the program DEMA.BAS for example. and RUN
DEMA will load and run this program. Quotes are
required around a filespec only when it is being refer-
enced in a program.

Professional BASIC™ Differences A-5

9.

10.

MKS$ and MKD$ - Random Access

The MKS$ and MKD$ functions will save single and
double precision numbers in 4 or 8 bytes using the
standard |EEE format, not the Microsoft format.

Integers are saved the same in both systems, except
that you may set aside either 2 or 4 bytes in a file field,
depending on whether you want to store single precision
integers or double precision integers. Professional
BASIC™ always works with integers as double precision,
except when the MKI$ function is used to store an
integer, if a FIELD statement has set aside 2 bytes, not 4.

Cursor

Cursor size cannot be set, nor can the cursor be
explicitly turned on or off. Professional BASIC™ turns
the cursor off unless an INPUT or INKEY$ statement is
soliciting input from the user. The third, fourth, and fifth
parameters in a LOCATE statement are ignored.

Function Keys

a. The 25th line on the screen never displays function
key values.

b. The function key values are always set by Profes-
sional BASIC™ unless an application is running.
Unlike the function keys under BASICA, function keys
under Professional BASIC™ will not retain the last set
of values assigned to them.

Professional BASIC™ Differences A-6

11.

12.

13.

14.

C. A running program may assign a string of up to 31
characters to any function key instead of only 15
characters.

BASIC Keywords

Under Professional BASIC™ keywords may be used as
parts of variable and label names. As a result, it is
usually necessary to put spaces between key words and
other characters. For instance:

GOTO125 is not acceptable but GOTO 125 is.
Integer Values
Integers can range from -2,147,483,648 to 2,147,483,467.
Single and Double Precision Values |

Single and double precision numbers can have
exponents from -308 to 308. Hence 15e300 is a valid
number. Do not use more than 7 digits in a single
precision number. If you want to have more significant
digits to work with a value such as 1.23456789 x 10200,
then enter 1.23456789d200 (i.e. use "d" instead of "e"
before the exponent).

Entering Scientific and Exponential Notation

a. The number 10e40 is not valid since it represents an
integer "10" raised to a power exceeding the value
of integers. Enter 10.0e40 instead.

b. 10" -3 should be entered as 10” (-3). Two operators
cannot be together.

Professional BASIC™ Differences A-7

15.

16.

17.

18.

SCREEN statement

You can access 4 screens in text mode on a mono-
chrome screen similar to the way multiple screens (4 or 8)
can be written to and switched among with a graphics
adapter card. 16k of RAM memory is used for these
screens, instead of using the RAM on the graphics card.
Thus this multiple screen option is available regardless
which screen adapter card is installed.

CIRCLE

If you want to specify the aspect ratio but leave out
the "color®, "start", and "stop" parameters, do not put in
commas such as:

CIRCLE (100,100),3,,,,5/4
instead enter:
CIRCLE (100,100),3,7,0,0,5/4
CHAIN
The ALL, DELETE n-m, and line number to start on
paramters may be entered in any order. If one is
omitted, do not put in an extra comma.
Arithmetic
a. All single and double precision calculations in Profes-
sional BASIC™ are performed either by the 8087

numeric coprocessor or an emulation of the 8087 in
80 bits. Thus the system insures a high degree of

Professional BASIC™ Differences A-8

19.

accuracy. Integer arithmetic is never done in the
8087, thus the speed of integer calculations is the
same for both pb.exe and pb8.exe. All arithmetic in
both pb.exe and pb8.exe is done in standard binary
floating point format.

b. PBD.EXE, the optional BCD version of Professional
BASIC™ requires the 8087 numeric COprocessor.
Since the arithmetic here is direct Binary Coded
Decimal, you will not find the typical round off error
standard with the binary floating point arithmetic
versions. |f you have purchased the 8087/80287
support package, please refer to Appendix E for more
information.

Error Handling

In addition to the standard error handling facilities
available in Microsoft BASIC, Professional BASIC™ offers
you extended features. In addition to the ERR value Pro-
fessional BASIC™ provides an ERR2 value that includes
the Microsoft error code and a two digit extension for
more accurate error handling. For instance, when ERR =
5, ERR2 could be any one of 54 values between 501 and
567, two examples could be: when ERR2 = 518 the error
message is "No format field defined in PRINT USING
statement”, or when ERR2 = 565 then the error message
would read "Attempt to do graphics in non graphics
mode®. The Professional BASIC™ error messages are
stored in a string named ERRS$, if you would prefer to use
them instead of writing your own. Please refer to
chapter 14 for more information.

B.

IMMEDIATE MODE COMMANDS

The following commands are available from the immediate

mode:

ABS
ASC
ATN
CDBL
CHDIR
CHR$
CINT
CLOSE
CLS
CONT
COos
CSNG
DATES
DELETE
EDIT
EOF
EXP
FILES
FIX
FRE

HEX$
INP
INSTR
INT
KILL
LEFT$
LEN
LET
LIST
LLIST
LOAD
LOC
LOF
LOG
LPOS
LPRINT
MERGE
MID$
MKDIR
NAME

NEW
OCT$
ouT
PEEK
RENUM
RIGHTS$
RMDIR
RND
RUN
SAVE
SGN
SIN
SQR
STR$
STRINGS
SYSTEM
TAN
TIMES
TIMER
VAL

C.

ACCURACY AND SPEED

The arithmetic in Professional BASIC™ is based on the 8087
numeric coprocessor. To make Professional BASIC™ available to
users without the 8087, a module has been built which needs
only the 8088 processor. To be compatible with the 8087,
however, this new module must work internally in a similar
fashion; thus it is much slower than an arithmetic module
without this constraint. The version of Professional BASIC™
using the 8088 for arithmetic is called PB8.

The 8087 transforms all data types to an 80 bit internal
format. Single precision numbers are expanded from their 32
bit format to the 80 bit format; and results are also in this 80
bit format. If a result is to be stored in single precision, the
number must first be transformed back to the 32 bit format.

The functions for the 8088-only version software arithmetic
have been biased toward accuracy rather than speed. If speed
is needed, then the 8087 should be installed and used to give
both speed and accuracy.

A severe test of the math functions was published in the
September, 1983 issue of "Dr. Dobbs Journal® and reprinted in
the March, 1984 issue of "Personal Computer Age". It is:

ACCURACY & SPEED C-2

10 'Time and General Accuracy Test
Program

20 defint i

30 iloop = 2500

40 a=1

50 for i=1 to iloop-1

60 a=tan(atn(exp(log(sgr(a*a)))))+1

70 next i

80 print using "a=#### . $##4";a

90 stop

The results for PB and PB8 are:

Time ratio

Mode Time(secs.) Result to PB
PB Single Precision 15.93 2500.0000 1
PB Double Precision 15.78 2500.0000 1
BASICA Single Precision 156,98 2179.8470 9.85
BASICA Double Precision 160.28 2179.8464 10.16
PB8 Single Precision 1012.83 2500.0000 63.58
PB8 Double Precision 1028.26 2500.0001 65.16

(Note: Both versions of PB use the 8088 for integer add,
subtract, and multiply)

The correct result for this test is 2500. Professional BASIC™
gives this result in all cases.

ACCURACY & SPEED

The times for the other operations are:

PB Time (ms) PB8 Time
Int divide .99 23.90
Sng addition .29 1.49
multiplication .29 2,05
division 32 18,35
Dbl addition .81 4.09
multiplication .82 4.68
division 44 19.01
Rnd function .55 82.89

Ratio

24.05
5.12
7.07
7.79
4.99
5.71
43.14
151.57

Both PB and PB8 are accurate to the full precision for the
add, subtract, multiply and divide operations.

accurate results for the functions such as Log.

PB gives 16 digit
PB8 is designed

to give results for the functions accurate to 8 digits. |f better
speed or accuracy are needed, the 8087 version is available and

should be used.

Lastly, the times for the sieve benchmark are given.

Mode Time (secs.) Ratio to PB
PB int 109.47 1

sng 124.84 1

dbl 137.80 1

PB8 int 109.47 1

sng 278.20 2.23
dbl 330.17 2.40
BASICA int 191.63 1.75
sng 233 1.87

dbl (program will not run in the 64kb limit of BASICA)

ACCURACY & SPEED

10
20
30

40
50
60
70
80
90
100
110
130
140
150
160
170
180
190
200

Sieve Benchmark Program

defint a-z

dim v (0 to 8190)

Start;print

date$,time; :timmy!=timer
size=8190

count=0

for i=0 to size

v(i)=1

next i

for i=

if v(i)=0 thengoto 1180
prime=i+i+3

1130;if k>size thengoto 1170
v(k)=0

k=k+prime

goto 1130

1170;count=count+1
1180;next i

print timer-timmy! ;" seconds"
goto Start

D.

ENTERING ASCII VALUES

Non-keyboard characters with any ASCII value from 1 to
255 can be used with Professional BASIC™. Most characters
(see list on next page) can be loaded from the disk or entered
via the keyboard. Programs with these characters can also be
saved to disk.

To view and enter these characters, begin by holding down
the <Alt> key and pressing the <Ins> key. The line above the
cursor will be replaced by a menu line with special characters.
The character in inverse video is the "currently selected
character®. You can find the decimal ASCIl value of this
character in the top right hand corner of your screen.

The character in inverse video may be changed one
character to the right or left by using the <left cursor> or
<right cursor> keys. The <Home> key selects the lowest
character (ASCIl value 001) and the <End> key selects the
highest character (ASCI1I value 255). You may also use the <4>,
<5>, <6>, and <7> keys (in the same fashion as on the variable
screen) to scroll left 1 or 10 characters (<5> or <4> key) or to
scroll right 1 or 10 characters (<6> or <7> key). To insert the
selected character at the cursor position, continue to hold down
the <Alt> key while striking the <Ins> key again, [If you wish
to repeat the character, continue to press the <Ins> key. To
return to normal operation, let up on the <Alt> key.

ENTERING ASCII VALUES D-2

The following characters are ones which you may not use.
This is not an exhaustive list, there may be other exceptions in
certain applications.

1. 009 horizontal tab - This character is
always interpeted as a horizontal tab.

2, 013 carriage return - It is always inter-
preted as a carriage return.

3. 026 This character can be used, but it also
acts as an End of File mark when it is
written out to disk and then read back
in.

INDEX

INDEX

A

A key 9-1,9-3
Active subroutine 7-8, 10-2, 10-3
Adaptive L and * Windows (Q Key)
11-3
Alt Enter 7-3, 11-2
Alt G 10-4
Alt Ins D-1
Alt key 1-10, 7-2, 7-3, 7-6, 11-2
Alt P I-iv, 4-3, 11-1
At N 10-3
Alt S 10-4
Alt Shift Prtsc 5-18
Alt space bar 7-2,11-1, 11-2
Arithmetic expressions 2-1, 5-17
Array 2-4, 2-5, 3-5, 3-6, 5-4,
5-14, 6-1

elements 2-4, 9-1

element address 12-2

subscripts 2-4

Window 9-1, 9-3
ASCIlI 6-1, 6-5, 12-1, D-1
ASCIl (text) format 4-4, 6-3,
6-4
AUTO 3-1, 5-6

Auto label generator 5-3

B
B key 8-1,8-6
Backspace key 5-6
Backup - systemn disk 1-3
Backup command 8-1, 8-6
BASIC code line 5-9
BASIC compiler 1-11, 2-8
BASIC interpreter 2-8
BASIC reference manual 6-1,
5-16

Beep 3-2,6-3

Binary encoded numeric data 6-4
Blinking cursor 5-8,7-6

Break key 1-7, 1-10, l-iv, 2-2,
4-1,7-1,7-2,7-6, 8-4, 8-6, 9-2,
BREAK 3-2

Breakpoint 3-2, 13-1, 13-2
Breakpoint setting 13-1

INDEX

1-2

C
C key 7-4,8-3,9-2
Caps Lock 7-3,7-7
Case - Lower or Upper 2-8, 5-11
Changing the default drive 3-2
Clicker (N Key) 10-3

CLS I-iii
cm 7-5
CN 7-7

Columbia 1-2
Command line parameters 2-9

Command Screen I-iii, l-iv, 3-2,

4-1, 4-3, 4-4, 5-5, 5-10, 5-17,

7-1, 7-4, 7-5, 7-6, 7-8, 8-4,
9-2, 10-4
Comment 6-3
COMPAQ 1-2, 8-5, 8-9
Compatibility 1-v, 2-8, 2-10, 6-1
Compatible 1-2, C 1

2-8

Compiler- 1-v,

Compiling 2-8

Conditional statements 3-5
Control errors 1-6

Control Master™ 7-5
Conversion of files 6-4, 6-5
Conversion 6-1, 6-5
Coordination - List Trace and Time
Trace Windows 8-9

Copy 1-3

Count on instructions 7-5

Ctrl Break 4-3,7-2

Ctrl End 5-8
Ctrl Home 5-8, 6-4
Ctrl 7-6

Cumulative number of instructior
executed 7-5

Currently selected character D-
Cursor down 8-7, 8-9, 9-3
Cursor key 5-4, 5-8, 5-9, 8-
9-3, 9-4, 10-5

Cursor left 5-7,7-7, 10-5, 12-
D-1

Cursor right 7-7, D-1

Cursor size 3-6

Cursor up 8-7,8-9, 9-3

Cursor 2-9, 3-6, 5-5, 5-7, 5~
5-17

CVD 6-4

CViI 6-5

CVS 6-4

D
D key 10-1, 10-4
Data representation 6-4, 6-5, C
1
DATA statements 10-4
DATA Window 10-4
DATA 10-5
Date and time 5-18, 12-6

INDEX 1-3

Debug 5-4 E

Debugging 1-7, 13-1 E key 8-1, 8-9

Decimal arithmetic 1-4, 2-3, 4-1, EDIT I-ii, 3-5, 5-19, 5-20, 6-2

E-1

Decimal format 12-2

DEF SEG 8-8

Default drive 3-2

Default filename 12-6

Del key 5-8,7-7

Delete a line 5-8, 5-16

DELETE I-ii, 5-8, 5-16
Demonstration Program 1-3, 1-4,
1-5, 1-6

dema 11-i, 10-3, 10-4
demb 11-i, 10-3, 10-4
demc 11-i, 10-3, 10-4
demi 11-ii, 8-2, 12-4
deml [Il-ii

demm (#m) I1-ii, 9-1, 9-4, 10-1
DIM 2-4, 2-8, 3-5, 6-1
Dimension 2-3, 2-5, 3-4, 6-1
Disk drive 1-2,2-10
Disk files 2-6,6-4
DOS 2.0 1-3
Double precision 6-4, 9-5, 12-2
Down cursor 8-7,9-3
Dynamic Syntax Checker™ 1-1
I-iii, 5-1, 5-3, 5-4, 5-7, 6-3, 14-1

’

Editing commands 5-3, 5-5, 5-9,
5-11, 5-13, 5-14, 5-15, 5-16, 5-18,

6-2

Editing programs 5-3

Editor 1-8, 1-i, I-ii, 1-iii, 2-8,
5-1, 5-4, 5-7, 6-2 |
Element 2-4 ;

Encoding numeric data in files
6-4
End key 5-7, 5-8, 8-4, 8-7, 9-3,
10-5, D-1
Enter Key 1-6, I-iv, 5-10, 5-12,
5-13, 5-17, 5-18, 5-19, 7-2, 7-5,
8-7,9-2,12-6
Environment 1-8, ll1-i
Error messages 1-9, 6-3, 14-1,
14-2
Errors 1-5, 5-14, 6-3, 6-4, 14-1,
14-2
Esc Key I-iv, 5-6, 5-7, 5-8, 5-10,
5-12,5-17,7-2
Exchange screens 8-1, 8-9
Execution

Count 8-5

Full speed 7-4

Suspended 7-6

INDEX

Execution frequency
Each instruction 8-5
Histogram 8-1, 8-5

EXITFOR 1-2, 3-4

EXITWHILE 1-2, 3-4

File

access 2-6

buffers 2-6, 2-9, 6-5, 12-1
handling 1-i, 2-5

1/0 Window 12-1
numbers 2-6

size 2-6,3-6
Conversion 6-4
Random access 2-7, 6-4
Sequential 2-7
Standard 1/0 2-7
Filename 5-5

FIND I-iii, 3-2, 5-3, 5-4, 5-12,
5-13, 5-14
FINDL I-iii, 3-2, 5-13, 5-14

Finetrace mode 3-2
Floating point numbers 6-4
FOR/NEXT 1-5, 3-5, 6-2, 7-8,

10-2, 10-3
FOR/NEXT Window 10-1
Format 1-3, 4-4
Full execute on Print screen 11-
Full speed execution 7-4
Full speed listing 5-10
Full speed print screen 11-2
Function keys 5-9, 5-18
F1 5-18,5-10

F2 5-18, 8-1

F3 5-18

F4 5-19

F5 5-19

F6 5-9,5-19

F7 1-6,5-19

F8 3-5,5-9, 5-19, 6-2
F9 5-4,5-9,5-19

G key 10-1,10-3

Generate program line numbe
5-6

GOSUB statements that are actiy
10-2, 10-3

GOSUB Window 10-3, 10-4
GOSUB 1-5, 5-14, 7-8, 10-
10-3

GOTO 1-5, 3-5, 5-14, 10-3

INDEX

1-5

H
Hexadecimal representation 12-1
Hexadecimal 12-2, 12-3
Histogram 8-1, 8-5
Historical record rewind 8-7
Home key 5-8, 8-4, 8-7, 9-3,
9-4,10-5, 12-4, D-1
How to program |-ii

|
1 key 12-1
1/0 Window 12-2
IBM PC BASIC 1-1, 1-9, I-i, I-v,
2-1, 2-3, 2-7, 4-2, 43,54,55,
52261626364, 5
|EEE standard format 2-5, 6-4
Immediate mode 2- 2, 3-6,
3-7, 5-6, 5-17, B-1
INCR 3-2,5-7
Increment value 5-6, 10-2
Indented format 8-3
Index value 10-2
Initial screen 5-5
Initialized state 7-6
INKEY$ 2-9
INPUT 5-2
Ins Key 5-8
Insert 5-7
Instant replay 8-9

6-
3,
1, 3-

Instructions Executed - cumulative
7-5
Integer 1-1, 2-3, 3-5, 6-5

32 bit 2-5

four byte 6-5

two byte 6-5

values 2-3, 6-5
Interpreter 1-5
Inverse video 7-8, 8-3
Inverting a matrix 1-6

J
J key 8-1,8-6

: K
K key 12-3
KEY(n) 3-8, A-4

Key-lock 5-19,7-7

Keyboard buffer indicator 7-9
Keyboard control 7-3,7-7
Keyboard Lock 7-7

L
L key 8-1,8-2,8-3
L Window 3-3
Label 2-3,5-11, 5-12, 5-13, 5-14,
5-15, 13-2

INDEX

1-6

Labeled line 1-1, 2-3

Last file loaded or saved 4-3,
12-6

Last line edited 3-5,5-19

LINE INPUT 2-9

Line label2-3,2-8, 3-2, 3-4, 5-4,
5-11, 5-14

Line length 2-2,5-3

Line number 2-2,5-3
Indicator 8-3
generation 5-6
statement to execute next 7-5
automatic numbering 3-2
optional use of 4-4, 4-5, 4-6,
5-20, 5-21, 5-22

Line of program code 5-4

List Trace Window 8-1, 8-2, 8-3,
8-4, 8-5, 8-6, 8-9, 11-3, 13-2

List Trace 3-3,8-8

LIST I-ii, 5-10, 5-11, 5-18, 8-4
Listing of all variables (SORTV)
3-4,5-4,5-14

Listing 5-11, 8-6

LLIST 1-ii, 5-11, 8-6

Load a program l-ii, 4-2, 6-3
LOAD I-ii, 3-6, 3-7, 4-2, 5-5,
5-18, 6-1, 6-2, 6-3, 8
LOC 2-7

7
6

LOCATE 2-9, 3-6, 6-2

Locating any text string (SEARCI
5-13

Locating labels 5-12, 5-14
Locating text 5-13

Locating variables (FIND) 5-12
Long instructions truncation 5-1
Long labels 5-13, 5-15

Long variable names 5-13, 5-15
LSET 6-5

M
M key 12-2
M window 12-2
Manual 1-9
Matrix inversion 1-6, ll-ii
Maximum line length indicas
7-9
Memory Display Window 12-4
Memory 1-8, 2-5, 2-10, 3-3, 5~
MERGE 3-7,4-5, 4-6, 5-20
Microsoft format 6-4
MKD$ 6-4
MKI$ 6-5
MKS$ 6-4
MOTOR 8-8

INDEX 1-7

N P-code 12-3
N key 10-3 pb 1-4,64-1,C-2, E-1
Nesting 3-5, 14-19 pb8 1-4,4-1,C-1,C-2
NEW I-iii, 4-3, 5-5
NEXT 3-5 PC DOS 2.x 1-2, 2-7
NOBREAK 3-3, 13-1 PgDn 8-4, 9-3
NOBREAKALL 3-3, 13-1 PgUp 8-4,9-3
NOEX 3-3, 8-5 POKE 8-8, 12-5
NOFINETRACE 3-3,5-18 Pokehex.bas 12-5
Non keyboard character D-1 Print buffer 2-10
Norrmal Program output 7-8 Print listing 5-11, 8-1, 8-6
Num Lock 7-7 Print Screen |-iv, 4-4, 7-2, 7-3,
Number keys 9-4 7-8, 11-1, 11-2, 13-2
Numeric keypad 5-7 Print Trace Window 11-2
Nurneric registers 12-2, 12-3 Print Trace 11-3
Numeric values, ranges of 1-1, Print/List window 11-1, 11-3
2-3 Printer 5-11

Printing date and time 5-18
Profile information accumulating

(0) 8-6
OK 5-5 Profiling counters reset 8-5
Onscreen Arithmetic 2-1, 5-17 Profiling 8-1, 8-5
Open file 2-7,14-8 Progamming environment 1-8,
Other BASIC systems 6-3 =i
Output screen indicator 7-8 Program creation 1-8,5-3
Output screen 7-8 Program execution replay 8-9

Program line 2-2, 2-5,5-5
Program output 7-8, 8-2, 11-1
P Program-trace windowing 1-4
P key 7-3,11-1,11-2 Protected saving format 4-4

INDEX

1-8

PrtSc 11-2

Pseudo Code 1-5,12-3
Register 12-2
Window 12-2

Q
Q key 11-1,11-3
Quotes 5-5

R

R key 9-1,9-4

RAM disk 2-10

RAM memory 1-2

Random files 2-5, 2-7, 6-4, 12-1
READ statements 8-8, 10-5

Real numbers 2-3, 6-4

Record length(bytes) 2-6
Record 2-6

Records per file 2-5

Redisplay the last command 5-19
Registers 12-2,12-3

REM 5-6

Removing Breakpoints 13-3
RENUM 5-16

Renumber 5-16

RESTORE 10-5

Row and column position of the
cursor 7-8

Run Time errors 14-1
RUN 1-4, 1-ii, 3-7, 4-2, 5-
5-18, 8-2, 8-8

S
S key 8-1, 8-4, 8-8, 8-9
S state 7-6

SAVE I-ii, 3-7, 4-3, 5-5, 5-1
6-2, 6-3
SAVEU 5-22

Screen splitting 8-8

Screen windows 1-6, 8-1

Scroll Lock Key 4-3

Scrolling

Program listing 8-4

Array elements 9-5

DATA statements 10-5
Variables 9-3

Search character 5-13
SEARCH 3-3, 5-3, 5-13, 6-4
SEARCHL 3-3,5-14
Self-running demonstration 1-4
Semi-compilation 1-1, 1-5, 4-
14-1

Sequential access files 2-5, 2-
12-1

Serial number of the instructic
7-5,8-7,10-1

SETTOP 3-3

INDEX

1-9

Shift Alt PrtSc 5-18

Shift key 7-3,7-6

Single precision numbers 2-4,
6-4, 10-3, 12-2, C-1, C-2, C-3
Single step execution mode 7-2,
10-1, 12-3, 13-1

SORTL I-iii, 3-4, 5-4, 5-14
SORTV I-iii, 3-4, 5-4, 5-14
Space bar 1- 6 4-2, 5-6, 5-10,

5-12, 7-5,7-6, 7-8, 8-3, 9-2

Speed C-1

Split screen 5-16, 8-1, 8-8

SRUN I-ii, 3-4, 5-4, 8-2, 8-8,
12-5

Statement Execution count 8-1,
8-5

Status line - f 7-8, 10-2

Status line- g 7-8, 10-3

Status line 4-1, 7-3, 7-4, 8-8,
10-2, 10-3

STEP mode 13-2

String space 12-4

Structured programming 2-8, 3-2,
3-4, 3-7, 4-5, 4-6, 5-4, 5-11,
5-14, 5-20, 5-22

Subroutines 10-3

Subscript 2-4

Suspended Program execution

1-iv, 4-3, 5-9, 13-2

Symbol table 1-5

Syntax error 5-1, 5-2, 6-3, 14-1
Syntax 1-6, 4-2

SYSTEM, I-iii, 5-19

System 1-6,5-1, 5-19

System differences 6-1

System disk 1-3, 1-4

T
T key 8-1, 8-6, 8-7
TAB key 2-9, D-2

Tilde 5-14, 6 4

Time Trace Window 8-1, 8-6, 8-7,
8-8, 8-9, 9-5

TIME 5-18

Tokenized format for saving pro-
grams 4-4

Tracing |-iv, 7-1, 8-1

Translate arithmetic to psuedo
code 1-5,12-2

TROFF 3-1

TRON 3-1

TRY line 5-2

Two Dimensional Single Precision
Array Window 9-1, 9-4

U
U key 9-5,12-1, 12-3
Unexecuted Statements 8-1, 8-5

INDEX 1-10

v Y
V key 9-1 Y key 12-4, 12-5
Variable 3-4, 5-4, 5-11, 5-14,
13-1
name 2-3,5-12,5-15 y A
values 8-8, 9-1,9-2 Z key 13-2
Window 9-1 Zero key 12-5
w SPECIAL CHARACTERS
W key 8-1,8-9 # =i, H=ii
WHILE/WEND 3-4, 3-7, 6-2, 7-8 * key 11-1,11-2
white line 1-6, 8-3 + key 9-4, 9-5,12-1, 12-4
wide (full screen) 8-1, 8-9 - key 9-4,9-5,12-1, 12-5
Windowed error message 14-1 ,BUFFERS 3-4
Windows 1-6, 5-4 ,R option (LOAD Command) 3~
6-2
,SIZE 3-4
X .BAS file extension 3-6, 6-2
X key 7-3,11-1,11-2 5 key 7-6
X state 7-6 8087 1-1,1-2, C-1
> 4-1,5-5,5-17,7-7,8-2
a@a 5-15
~ 5-14,6-3, 6-4

/ 8-9

	01739323.tif
	01739324.tif
	01739325.tif
	01739326.tif
	01739327.tif
	01739328.tif
	01739329.tif
	01739330.tif
	01739331.tif
	01739332.tif
	01739333.tif
	01739334.tif
	01739335.tif
	01739336.tif
	01739337.tif
	01739338.tif
	01739339.tif
	01739340.tif
	01739341.tif
	01739342.tif
	01739343.tif
	01739344.tif
	01739345.tif
	01739346.tif
	01739347.tif
	01739348.tif
	01739349.tif
	01739350.tif
	01739351.tif
	01739352.tif
	01739353.tif
	01739354.tif
	01739355.tif
	01739356.tif
	01739357.tif
	01739358.tif
	01739359.tif
	01739360.tif
	01739361.tif
	01739362.tif
	01739363.tif
	01739364.tif
	01739365.tif
	01739366.tif
	01739367.tif
	01739368.tif
	01739369.tif
	01739370.tif
	01739371.tif
	01739372.tif
	01739373.tif
	01739374.tif
	01739375.tif
	01739376.tif
	01739377.tif
	01739378.tif
	01739379.tif
	01739380.tif
	01739381.tif
	01739382.tif
	01739383.tif
	01739384.tif
	01739385.tif
	01739386.tif
	01739387.tif
	01739388.tif
	01739389.tif
	01739390.tif
	01739391.tif
	01739392.tif
	01739393.tif
	01739394.tif
	01739395.tif
	01739396.tif
	01739397.tif
	01739398.tif
	01739399.tif
	01739400.tif
	01739401.tif
	01739402.tif
	01739403.tif
	01739404.tif
	01739405.tif
	01739406.tif
	01739407.tif
	01739408.tif
	01739409.tif
	01739410.tif
	01739411.tif
	01739412.tif
	01739413.tif
	01739414.tif
	01739415.tif
	01739416.tif
	01739417.tif
	01739418.tif
	01739419.tif
	01739420.tif
	01739421.tif
	01739422.tif
	01739423.tif
	01739424.tif
	01739425.tif
	01739426.tif
	01739427.tif
	01739428.tif
	01739429.tif
	01739430.tif
	01739431.tif
	01739432.tif
	01739433.tif
	01739434.tif
	01739435.tif
	01739436.tif
	01739437.tif
	01739438.tif
	01739439.tif
	01739440.tif
	01739441.tif
	01739442.tif
	01739443.tif
	01739444.tif
	01739445.tif
	01739446.tif
	01739447.tif
	01739448.tif
	01739449.tif
	01739450.tif
	01739451.tif
	01739452.tif
	01739453.tif
	01739454.tif
	01739455.tif
	01739456.tif
	01739457.tif
	01739458.tif
	01739459.tif
	01739460.tif
	01739461.tif
	01739462.tif
	01739463.tif
	01739464.tif
	01739465.tif
	01739466.tif
	01739467.tif
	01739468.tif
	01739469.tif
	01739470.tif
	01739471.tif
	01739472.tif
	01739473.tif
	01739474.tif
	01739475.tif
	01739476.tif
	01739477.tif
	01739478.tif
	01739479.tif
	01739480.tif
	01739481.tif
	01739482.tif
	01739483.tif
	01739484.tif
	01739485.tif
	01739486.tif
	01739487.tif
	01739488.tif
	01739489.tif
	01739490.tif
	01739491.tif
	01739492.tif
	01739493.tif
	01739494.tif
	01739495.tif
	01739496.tif
	01739497.tif
	01739498.tif
	01739499.tif
	01739500.tif
	01739501.tif
	01739502.tif
	01739503.tif
	01739504.tif
	01739505.tif
	01739506.tif
	01739507.tif
	01739508.tif
	01739509.tif
	01739510.tif
	01739511.tif
	01739512.tif
	01739513.tif
	01739514.tif
	01739515.tif
	01739516.tif
	01739517.tif
	01739518.tif
	01739519.tif
	01739520.tif
	01739521.tif
	01739522.tif
	01739523.tif
	01739524.tif
	01739525.tif
	01739526.tif
	01739527.tif
	01739528.tif
	01739529.tif
	01739530.tif
	01739531.tif
	01739532.tif
	01739533.tif
	01739534.tif
	01739535.tif
	01739536.tif
	01739537.tif
	01739538.tif
	01739539.tif
	01739540.tif
	01739541.tif
	01739542.tif
	01739543.tif
	01739544.tif
	01739545.tif
	01739546.tif
	01739547.tif
	01739548.tif
	01739549.tif
	01739550.tif
	01739551.tif
	01739552.tif
	01739553.tif
	01739554.tif
	01739555.tif
	01739556.tif
	01739557.tif
	01739558.tif
	01739559.tif
	01739560.tif
	01739561.tif
	01739562.tif
	01739563.tif
	01739564.tif
	01739565.tif
	01739566.tif
	01739567.tif
	01739568.tif
	01739569.tif
	01739570.tif
	01739571.tif
	01739572.tif
	01739573.tif
	01739574.tif
	01739575.tif
	01739576.tif
	01739577.tif
	01739578.tif
	01739579.tif
	01739580.tif

